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Abstract: These notes are largely based on Math 6620: Analysis of Numerical Methods
II course, taught by Yekaterina Epshteyn in Spring 2017, at the University of Utah. Additional
examples or remarks or results from other sources are added as I see fit, mainly to facilitate
my understanding. These notes are by no means accurate or applicable, and any mistakes here
are of course my own. Please report any typographical errors or mathematical fallacy to me
by email tan@math.utah.edu
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Chapter 1

Solvers For Nonlinear Equations

Root-finding problems are one of the most fundamental problem in Applied Mathematics, due
to the fact that almost any problems can be rephrase as solving the equation fpxq “ 0. In
general, explicit solutions are not possible and one must be contented with being able to numer-
ically compute a root to any specified degree of accuracy. In this chapter, we will study three
classical root-finding algorithms belonging to the more general class of iterative methods;
the central idea is one chooses an initial guess to initiate the algorithm, which then generates
sequence of successive approximations to a solution. Let us first define the convergence and
rate of convergence for iterative methods:

Definition 1.0.1 ([Atk08]). Given an iterative method, a sequence of iteratives pxnq
8
n“0 is said

to converge with order p ě 1 to a point α if there exists a constant C ą 0 such that

|α ´ xn`1| ď C|α ´ xn|
p for all n ě 0. (1.0.1)

If p “ 1, the iterative method is said to have linear convergence; if p “ 2, the iterative method
is said to have quadratic convergence.

Remark 1.0.2. This definition of order of convergence is inconvenient for some linearly con-
vergent iterative methods. Indeed, iterating the inequality (1.0.1) with p “ 1 yields

|α ´ xn| ď Cn
|α ´ x0| for all n ě 0. (1.0.2)

Observe that (1.0.2) is a weaker condition compare to (1.0.1) and can be shown directly in some
cases. If this were true, the iterative method will still be said to converge linearly provided
(1.0.2) holds for C ă 1.

7



8 1.1. Bisection Method

1.1 Bisection Method

Assume that f P Cra, bs such that fpaqfpbq ă 0. From the Intermediate Value Theorem,
it follows that there exists at least one root α P ra, bs. The idea is to repeatedly halved the
interval ra, bs and then selects a subinterval containing α, until we reach the desired accuracy.
Below we present a pseudocode for the bisection method:

Bisection Method: Bisect(f, a, b, root, ε)

1. Define c1 :“ pa` bq{2.

2. If either |b´ c1| ă ε or |a´ c1| ă ε, set root:“ c1 and exit. Otherwise, check the sign
of fpc1q.

3. If fpaqfpc1q ă 0, then set b :“ c1 and return to Step 1. Otherwise, set a :“ c1 and
return to Step 1.

On completion of the algorithm, cn will be an approximation to the root with |α´ cn| ă ε
due to Step 2. Moreover, the interval ra, bs is halved in size after every successive iteration.
This leads to the following upper bound:

|α ´ cn| ď

ˆ

1

2

˙n

pb´ aq and lim
nÑ8

cn “ α. (1.1.1)

From Remark (1.0.2), we say that the bisection method converges linearly with a rate of
C “ 1{2. Note that the actual error may not decrease by a factor of 1{2 at each iteration, but
the average rate of decrease is 1{2. (1.1.1) tells us how many iterations are needed to achieve
a given accuracy ε ą 0. Indeed,

b´ a

2n
ď ε ðñ n ě

lnpb´ aq ´ lnpεq

lnp2q
.

Bisection method is guaranteed to converge provided f P C0ra, bs and a, b P R are such that
fpaqfpbq ă 0. Moreover, we obtain a robust error estimate (1.1.1) and the rate of convergence
C “ 1{2 is independent of initial guesses a, b. The downside is that it converges very slowly
comparing to Newton’s method and secant method, as we shall see in Section 1.2 and Section
1.3. In practice, the bisection method is often used to obtain a “good” initial guess for rapidly
convergent methods.

1.2 Newton’s Method

Albeit some difficulties and limitations, Newton’s method is an extremely powerful root-finding
algorithm since it converges quadratically in general. Applications of Newton’s method include
optimisation problems and solving nonlinear equations. In what follows, we first derive New-
ton’s method both geometrically and algebraically. We then prove a convergence theorem of
Newton’s method and discuss its limitations. Lastly, we provide a pseudocode for the method.
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y

Figure 1.1: Newton’s method with fpxq “ x2 ´ 1 and x0 “ 3. We obtain x2 “
34

30
« 1.13.

Consider an initial guess x0 of the desired root α of fpxq “ 0, which we may assumed to
be sufficiently close to α. The main idea is to represent fpxq in a neighbourhood of x0 with its
linear approximation, i.e.

fpxq « fpx0q ` f
1
px0qpx´ x0q.

We then use the root of this tangent line, denoted by x1, to approximate α. Since the equation
of the tangent line is y ´ fpx0q “ f 1px0qpx´ x0q, we obtain:

´fpx0q “ f 1px0qpx1 ´ x0q ùñ x1 “ x0 ´
fpx0q

f 1px0q
, if f 1px0q ‰ 0.

This procedure can be repeated and provided f 1pxnq ‰ 0 for each n ě 0, we obtain the recursive
relation for xn:

xn`1 “ xn ´
fpxnq

f 1pxnq
, n ě 0. (Newton’s method)

Alternatively, one can derive (1.2.1) using a Taylor series approach. More precisely, assume
f P C2 in some neighbourhood of α. Expanding fpxq about the point xn yields

fpxq “ fpxnq ` f
1
pxnqpx´ xnq `

f2pξnq

2!
px´ xnq

2, for some ξn between x and xn.

Setting x “ α and using fpαq “ 0 gives

0 “ fpxnq ` f
1
pxnqpα ´ xnq `

f2pξnq

2
pα ´ xnq

2

ùñ α “

ˆ

xn ´
fpxnq

f 1pxnq

˙

loooooooomoooooooon

xn`1

´
f2pξnq

2f 1pxnq
pα ´ xnq

2

looooooooomooooooooon

Error term

, (1.2.1)

where ξn is now between α and xn.
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1.2.1 Convergence Analysis

We now prove a convergence result which shows the speed of convergence and also an interval
from which initial guesses can be chosen.

Theorem 1.2.1. Suppose f P C2 in some neighbourhood of α where fpαq “ 0, f 1pαq ‰ 0. If
x0 is chosen sufficiently close to α, the iterates pxnq

8
n“0 of (Newton’s method) will converge to

α. Moreover, we have the following asymptotic rate:

lim
nÑ8

α ´ xn`1

pα ´ xnq2
“ ´

f2pαq

2f 1pαq
, (1.2.2)

which shows that Newton’s method has quadratic convergence.

Proof. Choose a sufficiently small interval Iε “ rα ´ ε, α ` εs on which f 1pxq ‰ 0 on Iε; such
interval exists by continuity of f 1. Set

M :“
max
xPIε

|f2pxq|

2 min
xPIε

|f 1pxq|
“ max

xPIε

1

2

ˆ

|f2pxq|

|f 1pxq|

˙

.

Choose x0 P Iε. From (1.2.1) with n “ 0, we have the following estimate:

|α ´ x1| ďM |α ´ x0|
2
ùñ M |α ´ x1| ď

”

M |α ´ x0|

ı2

.

If we choose x0 satisfying M |α ´ x0| ă 1 in addition to x0 P Iε, then

M |α ´ x1| ďM |α ´ x0| ă 1 and |α ´ x1| ď |α ´ x0| ď ε.

A similar argument shows that

|α ´ xn| ď ε and M |α ´ xn| ă 1 for all n ě 1.

Convergence is now easy to show. Indeed, iterating (1.2.3) yields

M |α ´ xn| ď
”

M |α ´ xn´1|

ı2

ď

”

M |α ´ xn´2|

ı22

ď . . . ď
”

M |α ´ x0|

ı2n

.

Since M |α ´ x0| ă 1, we have that

|α ´ xn| ď
1

M

”

M |α ´ x0|

ı2n

ÝÑ 0 as n ÝÑ 8.

Moreover, this implies that ξn ÝÑ α as n ÝÑ 8 since ξn lies between xn and α. Finally, using
the assumption that f P C2pIεq,

lim
nÑ8

α ´ xn`1

pα ´ xnq2
“ ´ lim

nÑ8

f2pξnq

2f 1pxnq
“ ´

f2pαq

2f 1pαq
.

�
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Remark 1.2.2.

1. This is a local result and the interval of convergence is not known a-priori. We stress
again that the Newton’s method has quadratic convergence if x0 is chosen in such a way
that

|α ´ x0| ď min

"

ε,
1

M

*

.

The constant
1

M
ensures that all the iterates pxnq

8
n“0 remains in the interval Iε where

f 1pxnq ‰ 0.

2. The assumption f 1pαq ‰ 0 says that α is a root of multiplicity 1. If α has multiplicity
p ą 1, some modifications on the iteration formula is required in order to preserve
quadratic convergence. We will see the following proposed modification in Section 1.5:

xn`1 “ xn ´ p

ˆ

fpxnq

f 1pxnq

˙

.

We will also show in Section 1.5 that it is possible to achieve convergence in any order
of accuracy if we increase the regularity of f .

3. If f is not C2, then we would still expect convergence, but the order of convergence might
be linear instead of quadratic.

1.2.2 Error Estimate

Using the Mean Value Theorem,

fpxnq “ fpxnq ´ fpαq “ f 1pξnqpxn ´ αq ùñ α ´ xn “ ´
fpxnq

f 1pξnq
,

with ξn between xn and α. If f 1pxq is not changing too rapidly near α, i.e. f is not oscillating
near α, then we have f 1pξnq « f 1pxnq and

α ´ xn « ´
fpxnq

f 1pxnq
“ xn`1 ´ xn, (1.2.3)

where the last equality follows from the iterative formula for (Newton’s method). Note that
(1.2.3) corresponds to absolute error estimate. For relative error estimate,

α ´ xn
α

«
xn`1 ´ xn
xn`1

.

Note that these are emperical estimates under the assumption of Theorem 1.2.1.

Despite the quadratic convergence, Newton’s method is very sensitive to initial guess. Usu-
ally there are clear choices of an initial guess x0 that comes from the problem, otherwise one
can run a few iterations of bisection method to obtain a reasonable x0. The other downside is
the need to evaluate the derivative explicitly, which could be computationally expensive. One
way to overcome this difficulty is to approximate the derivative using suitable finite-differences,
but this comes at the cost of a somewhat slower speed of convergence.
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Newton’s method: Newton(f, df, x0, ε,root, itmax, ier), where

df “ derivative f 1

ε “ tolerance

root “ numerical root

itmax “ maximum number of iterations

ier “ error flag.

1. itnum :“ 1.

2. Set denom :“ dfpx0q.

3. If denom = 0, then set ier :“ 2 and exit.

4. x1 “ x0 ´
fpx0q

denom
.

5. If |x1 ´ x0| ď ε, then set ier :“ 0, root :“ x1 and exit.

6. If itnum = itmax, set ier :“ 1 and exit.

7. Otherwise, set itnum :“ itnum + 1, x0 “ x1 and go to Step 2.

1.3 Secant Method

The secant method can be seen as a modification of Newton’s method, in which one replaces
the derivative f 1 by the first-order backward finite-difference. More precisely, let x0, x1 be two
initial guesses of the desired root α of fpxq “ 0. Recall that in Newton’s method, we performed
a linear approximation for fpxq in the neighbourhood of x0. An alternative to approximate the
graph of fpxq is using the secant line determined by px0, fpx0qq and px1, fpx1qq. The root of
this secant line, denoted by x2, is then used to approximate α. Since x0, x1, x2 are collinear,

fpx1q ´ fpx0q

x1 ´ x0

“
fpx1q ´ fpx2q

x1 ´ x2

“
fpx1q

x1 ´ x2

,

and solving for x2 gives:

x2 “ x1 ´ fpx1q

ˆ

px1 ´ x0q

fpx1q ´ fpx0q

˙

loooooooooomoooooooooon

«1{f 1px1q

.

Repeating this procedure yields the following iteration formula, known as the secant method

xn`1 “ xn ´ fpxnq

„

xn ´ xn´1

fpxnq ´ fpxn´1q



, n ě 1. (Secant method)

It does not necessarily converge, but when it does, the speed of convergence is usually greater
than the bisection method.
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x0

x1

x2
x

y

Figure 1.2: Secant method with fpxq “ x2 ´ 2 and x0 “ 1, x1 “ 2. We obtain x2 “ 1.2.

Theorem 1.3.1. Assume f P C2 in some interval containing α, where fpαq “ 0, f 1pαq ‰ 0. If
x0, x1 are chosen sufficiently close to α, the iterates pxnq

8
n“0 of the (Secant method) converges

to α. Moreover, we have the following asymptotic rate

lim
nÑ8

|α ´ xn`1|

|α ´ xn|p1`
?

5q{2
“

ˇ

ˇ

ˇ

ˇ

f2pαq

2f 1pαq

ˇ

ˇ

ˇ

ˇ

p
?

5´1q{2

, (1.3.1)

which shows that the order of convergence is p “
1`

?
5

2
« 1.62.

Proof. Following the proof of Theorem 1.2.1, choose a sufficiently small interval Iε “ rα´ε, α`
εs on which f 1pxq ‰ on Iε. (Read proof from [Atk08, pp. 68-69]).

�

The secant method only requires one function evaluation per iterate if we store the previ-
ous value, whereas Newton’s method requires two function evaluations per iterate. In terms of
computation, the secant method is more appealing since it is less costly comparing to Newton’s
method, but it is generally slower.

1.4 One-Point Iteration Methods

It turns out that root-finding problems belong to a more general class of problems, known as
fixed-point problem, which has the form x “ gpxq. Consider solving x2 ´ α “ 0, α ą 0. We
can reformulate this problem in terms of x “ gpxq several ways:

1. x “ x2 ` x´ α;

2. x “ α{x;

3. x “
1

2

´

x`
α

x

¯

.
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Consider solving for x “ α the equation x “ gpxq using the iteration method:

xn`1 “ gpxnq, n ě 0. (FPI)

Such solution is called a fixed point of g. In the case of Newton’s method, we have

gpxq “ x´
fpxq

f 1pxq
.

Lemma 1.4.1. Given g P Cra, bs such that g : ra, bs ÝÑ ra, bs. Then g has at least one fixed
point α P ra, bs satisfying α “ gpαq.

Proof. Consider the function fpxq “ gpxq ´ x which is continuous on ra, bs. The assumption
a ď gpxq ď b implies

fpaq “ gpaq ´ a ě 0

fpbq “ gpbq ´ b ď 0.

It follows from the Intermediate Value Theorem that there exists c P ra, bs such that
fpcq “ gpcq ´ c “ 0.

�

Theorem 1.4.2. Let g P Cra, bs such that g : ra, bs ÝÑ ra, bs. If there exists a constant
λ P p0, 1q such that

|gpxq ´ gpyq| ď λ|x´ y| for all x, y P ra, bs,

then g has a unique fixed point α P ra, bs. Moreover, the iterates pxnq
8
n“0 of (FPI) converges

to the fixed point α for any choice of initial guess x0 P ra, bs and we have the following a-priori
error estimate:

|α ´ xn| ď
λn

1´ λ
|x1 ´ x0|. (1.4.1)

Proof. Observe that existence of a fixed point of g follows from Lemma 1.4.1. To prove unique-
ness, suppose there are two fixed points α, β of g in ra, bs. Then

|α ´ β| “ |gpαq ´ gpβq| ď λ|α ´ β| ùñ p1´ λq|α ´ β| ď 0,

and it follows that α “ β since p1´λq ą 0. Note that the iterates pxnq
8
n“0 P ra, bs since g maps

ra, bs into itself. Let α be the fixed point of g. Then

|α ´ xn`1| “ |gpαq ´ gpxnq| ď λ|α ´ xn|,

and iterating this inequality yields the inequality:

|α ´ xn| ď λn|α ´ x0| ÝÑ 0 as n ÝÑ 8,

since λ P p0, 1q. Thus, xn ÝÑ α as n ÝÑ 8 for any choice of initial guess x0 P ra, bs. Finally,
to prove (1.4.1), applying triangle-inequality yields

|α ´ x0| ď |α ´ x1| ` |x1 ´ x0| “ |gpαq ´ gpx0q| ` |x1 ´ x0|

ď λ|α ´ x0| ` |x1 ´ x0| (1.4.2)

and so

|α ´ xn| ď λn|α ´ x0| ď
λn

1´ λ
|x1 ´ x0|.

�
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Remark 1.4.3. The error estimate (1.4.1) shows that the iteration (FPI) converges linearly,
with the rate of convergence bounded by λ. From (1.4.2), if we replace the pair px0, x1q by
pxn, xn`1q, then we obtain the following a-posteriori error estimate:

|α ´ xn`1| ď λ|α ´ xn| ď
λ

1´ λ
|xn`1 ´ xn| for any n ě 0.

There is a caveat: this error estimate is not applicable when λ « 1.

Theorem 1.4.4. Assume g P C1ra, bs such that g : ra, bs ÝÑ ra, bs and

λ :“ max
xPra,bs

|g1pxq| ă 1.

Then g has a unique fixed point α P ra, bs. Moreover, the iterates pxnq
8
n“0 of (FPI) converges

to the fixed point α for any choice of initial guess x0 P ra, bs and

|α ´ xn| ď λn|α ´ x0| ď
λn

1´ λ
|x1 ´ x0|.

Moreover, the following asymptotic rate holds:

lim
nÑ8

α ´ xn`1

α ´ xn
“ g1pαq,

which says that the convergence of (FPI) is linear if g1pαq ‰ 0.

Proof. Every result is a consequence of Theorem 1.4.2 except for the asymptotic rate. To show
the asymptotic rate, applying the Mean Value Theorem yields

α ´ xn`1 “ gpαq ´ gpxnq “ g1pξnqpα ´ xnq,

for some ξn between α and xn. Since xn ÝÑ α as n ÝÑ 8, we also have ξn ÝÑ α as n ÝÑ 8.
Consequently,

lim
nÑ8

α ´ xn`1

α ´ xn
“ lim

nÑ8
g1pξnq “ g1pαq,

where the last equality follows from the assumption g P C1ra, bs.
�

Corollary 1.4.5. Assume α is a fixed point of g, where g P C1 in some interval around α with
|g1pαq| ă 1. Then Theorem 1.4.4 still holds, provided the initial guess x0 is chosen sufficiently
close to α.

Proof. Choose a number λ ą 0 satisfying |g1pαq| ă λ ă 1. Next, choose a sufficiently small
interval Iε “ rα ´ ε, α` εs such that

max
xPIε

|g1pxq| ď λ ă 1.

We claim that gpIεq Ă Iε: for any x P Iε we have that for some ξ P Iε

|α ´ gpxq| “ |gpαq ´ gpxq| “ |g1pξq||α ´ x| ď λ|α ´ x| ď ε.

The desired result follows by applying Theorem 1.4.4 on the interval Iε.
�
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1.5 Higher Order One-Point Methods

We extend Theorem 1.4.2 by considering methods with an order of convergence p ą 1.

Theorem 1.5.1. Assume α is a fixed point of g, where g P Cp in some interval around α for
some p ě 2 and

g1pαq “ g2pαq “ . . . “ gpp´1q
pαq “ 0.

If the initial guess x0 is chosen sufficiently close to α, then the iteration (FPI) will have an
order of convergence p. Moreover, we have the following asymptotic rate:

lim
nÑ8

α ´ xn`1

pα ´ xnqp
“ p´1qp´1

ˆ

gppqpαq

p!

˙

.

Proof. It follows from Corollary 1.4.5 that the iteration (FPI) converges since |g1pαq| “ 0 ă 1.
To obtain the asymptotic rate, we expanding gpxnq about the point α to get:

xn`1 “ gpxnq “ gpαq ` g1pαqpxn ´ αq `
g2pαq

2!
pxn ´ αq

2
` . . .

. . . `
gpp´1qpαq

pp´ 1q!
pxn ´ αq

p´1
`
gppqpξnq

p!
pxn ´ αq

p

where ξn is some number between α and xn. Since gpjqpαq “ 0 for every j “ 1, . . . , p ´ 1 by
assumption, the above reduces to:

xn`1 ´ α

pxn ´ αqp
“

1

p!
gppqpξnq ùñ

α ´ xn`1

pα ´ xnqp
“
p´1qp´1

p!
gppqpξnq.

Consequently,

lim
nÑ8

α ´ xn`1

pα ´ xnqp
“ lim

nÑ8

p´1qp´1

p!
gppqpξnq “ p´1qp´1

ˆ

gppqpαq

p!

˙

,

where the last equality follows from the assumption that g P Cp.
�

Example 1.5.2. As an illustration, we apply Theorem 1.5.1 onto Newton’s method. Since

gpxq “ x´
fpxq

f 1pxq
,

g1pxq “ 1´

ˆ

1´
fpxqf2pxq

rf 1pxqs2

˙

“
fpxqf2pxq

rf 1pxqs2

g2pxq “
rf 1pxqs2rfpxqf2pxq ` f 1pxqf2pxqs ´ fpxqf2pxqr2f 1pxqf2pxqs

rf 1pxqs4

“
fpxqrf 1pxqs2f3pxq ` rf 1pxqs3f2pxq ´ 2fpxqf 1pxqrf2pxqs2

rf 1pxqs4

“
fpxqf 1pxqf3pxq ` rf 1pxqs2f2pxq ´ 2fpxqrf2pxqs2

rf 1pxqs3
.

It follows from fpαq “ 0, f 1pαq ‰ 0 that g1pαq “ 0, g2pαq “
f2pαq

f 1pαq
and we recover the quadratic

convergence for Newton’s method. Note that if f2pαq “ 0, then g2pαq “ 0 and we obtain
super-convergence pp “ 3q.
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1.6 Newton’s Method For Repeated Roots

Considering Newton’s method as a fixed point problem, i.e.

xn`1 “ gpxnq :“ xn ´
fpxnq

f 1pxnq
, n ě 0. (1.6.1)

Suppose fpxq has a root of multiplicity p ą 1, we can rewrite fpxq as:

fpxq “ px´ αqphpxq, (1.6.2)

with hpαq ‰ 0 and h continuous at x “ α. Observe that if h is sufficiently differentiable at
x “ α, then (1.6.2) is equivalent to

fpαq “ f 1pαq “ . . . “ f pp´1q
pαq “ 0, f ppqpαq ‰ 0. (1.6.3)

First, simplify gpxq by computing f 1pxq:

f 1pxq “ ppx´ αqp´1hpxq ` px´ αqph1pxq

ùñ gpxq “ x´
px´ αqphpxq

ppx´ αqp´1hpxq ` px´ αqph1pxq

“ x´
px´ αqhpxq

phpxq ` px´ αqh1pxq
.

Next, computing g1pxq yields

g1pxq “ 1´

ˆ

hpxq

phpxq ` px´ αqh1pxq
` px´ αq

d

dx

ˆ

hpxq

phpxq ` px´ αqh1pxq

˙˙

It follows that g1pαq “ 1 ´
1

p
‰ 0 since p ą 1. Consequently, Newton’s method for repeated

root converges linearly with rate of convergence 1´
1

p
“
p´ 1

p
.

To recover quadratic convergence, we need to modify gpxq such that g1pαq “ 0. From the
expression of g1pxq, we propose a new function gppxq that has the form:

gppxq “ x´ p

ˆ

fpxq

f 1pxq

˙

.

By construction, g1ppαq “ 0. Moreover, for some ξn between α and xn we have:

α ´ xn`1 “ gpαq ´ gpxnq “ ´rgpxnq ´ gpαqs

“ ´

”

g1pαqpxn ´ αq `
g2pξnq

2!
pxn ´ αq

2
ı

“ ´
g2pξnq

2
pxn ´ αq

2,

which is consistent with the asymptotic rate from Theorem 1.5.1.



18 1.7. Problems

1.7 Problems

1. Consider the iterative method to find a root α P ra, bs of fpxq

xn`1 “ gpxnq :“ xn ´

ˆ

b´ a

fpbq ´ fpaq

˙

fpxnq. (1.7.1)

Show that the sequence of the iterates xn converges to the root α and state the required
conditions on fpxq. What is the expected order of the convergence?

Solution: First, if g is sufficiently differentiable near x “ α, then its pth derivative
with respect to x, evaluated at x “ α for p ě 1 is:

g1pαq “ 1´

ˆ

b´ a

fpbq ´ fpaq

˙

f 1pαq

gppqpαq “ ´

ˆ

b´ a

fpbq ´ fpaq

˙

f ppqpαq, p ě 2.

Below we present three different convergence results, each having different assump-
tions on f :

(a) Suppose g1pαq “ 0, i.e. f 1pαq “
fpbq ´ fpaq

b´ a
. Assuming f P Cp in some interval

around α for p ě 2 and

f 1pαq “
fpbq ´ fpaq

b´ a
, f 2pαq “ . . . “ f pp´1q

pαq “ 0,

and the initial guess x0 is chosen sufficiently close to α. It follows from Theorem
1.5.1 that the iteration (1.7.1) converges, with order of convergence p.

(b) Suppose g1pαq ‰ 0. There are two possible convergence results:

i. Assume g P C1 in some interval around α, which amounts to assuming
f P C1 in some interval around α, together with

|g1pαq| “

ˇ

ˇ

ˇ

ˇ

1´

ˆ

b´ a

fpbq ´ fpaq

˙

f 1pαq

ˇ

ˇ

ˇ

ˇ

ă 1,

which is equivalent to

0 ă

ˆ

b´ a

fpbq ´ fpaq

˙

f 1pαq ă 2.

If the initial guess x0 is chosen sufficiently close to α, then the iteration
(1.7.1) converges from Corollary 1.4.5, with order of convergence p “ 1.
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ii. If f P C1ra, bs such that for every x P ra, bs,

$

’

’

&

’

’

%

a ď x´

ˆ

b´ a

fpbq ´ fpaq

˙

fpxq ď b,

0 ă

ˆ

b´ a

fpbq ´ fpaq

˙

f 1pxq ă 2,

where each of these corresponds to g : ra, bs ÝÑ ra, bs and max
xPra,bs

|g1pxq| ă 1

respectively. Then for any choice of initial guess x0 P ra, bs, the iteration
(1.7.1) converges, with order of convergence p “ 1.
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Chapter 2

Interpolation Theory

Given a finite set of data points pxj, yjq, j “ 0, 1, . . . , n, the interpolation problem is to
find a function ppxq from a given class of functions that passes through these points, i.e. ppxq
satisfies

ppxjq “ yj, j “ 0, 1, . . . , n. (2.0.1)

The points x0, x1, . . . , xn are called the interpolation points/nodes. Clearly, a trivial solu-
tion exists by simply connecting all given points with straight lines. However, one usually seek
smooth functions such as polynomials and trigonometric functions. We mention a well-known
result, the Weierstrass approximation theorem, which states that every continuous func-
tion on a closed interval can be uniformly approximated by a polynomial function.

2.1 Polynomial Interpolation Theory

Ideas from polynomial interpolation theory is widely used in developing methods in the ar-
eas of approximation theory, numerical integration and the numerical solution of differential
equation. Consider the problem of finding a polynomial ppxq that interpolates the given data
points pxj, yjq, where x0, x1, . . . , xn are assumed to be distinct real or complex numbers, with
associated function values y0, y1, . . . , yn. This is a classic existence and uniqueness problem.

Observe that there exists infinitely many polynomials that interpolates the data if there is
no restriction on degppq. However, we will show in Theorem 2.1.1 that a unique interpolating
polynomial p exists, provided degppq ď n. Consider a polynomial of degree n which has the
form

ppxq “
n
ÿ

j“0

ajx
j
“ a0 ` a1x` . . .` anx

n. (2.1.1)

Substituting (2.0.1) into (2.1.1) yields the following system of pn` 1q linear equations

a0 ` a1x0 ` . . .` anx
n
0 “ y0

a0 ` a1x1 ` . . .` anx
n
1 “ y1

...
...

a0 ` a1xn ` . . .` anx
n
n “ yn.

21
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This can be written in the matrix form V a “ y, where V P Cpn`1qˆpn`1q is the Vandermonde
matrix

V “

»

—

—

—

—

—

–

1 x0 x2
0 . . . xn0

1 x1 x2
1 . . . xn1

...
...

...
...

1 xn x2
n . . . xnn

fi

ffi

ffi

ffi

ffi

ffi

fl

. (2.1.2)

Theorem 2.1.1 (Existence and Uniqueness). Given pn` 1q distinct points x0, x1, . . . , xn and
pn ` 1q ordinates y0, y1, . . . , yn, there exists a polynomial ppxq of degree at most n such that
ppxjq “ yj for every j “ 0, 1, . . . , n. Such polynomial is unique among the set of all polynomials
of degree at most n.

Proof. We present three different proofs.

1. The linear system V a “ y has a unique solution if and only if N pV q “ t0u. Suppose
V b “ 0 for some b. This means that the polynomial ppxq “ b0 ` b1x ` . . . ` bnx

n has
pn ` 1q distinct zeros x0, x1, . . . , xn. It follows from the Fundamental Theorem of
Algebra that ppxq ” 0, which gives b “ 0.

2. We exploit the structure of the Vandermonde matrix (2.1.2). It can be shown that

detpV q “
ź

0ďjăiďn

pxi ´ xjq.

This shows that detpV q ‰ 0 since the interpolation nodes are assumed to be distinct.
Thus V is nonsingular and there exists a unique solution to the linear system V a “ y.

3. This last one is a constructive proof. It suffices to solve the following special case of the
polynomial interpolation problem: for some fixed 0 ď i ď n, let yj “ δij, where δij is the
Kronecker delta function. This leads to finding a polynomial of degree ď n having the
form

pipxq “ cpx´ x0q . . . px´ xi´1qpx´ xi`1q . . . px´ xnq,

where c is a constant to be determined. Solving for pipxiq “ yi “ δii “ 1 yields

c “
”

pxi ´ x0q . . . pxi ´ xi´1qpxi ´ xi`1q . . . pxi ´ xnq
ı´1

.

This can be written in a more compact form

pipxq “ lipxq “
ź

j‰i

ˆ

x´ xj
xi ´ xj

˙

, lipxjq “ δij. (2.1.3)

We claim that the unique solution to the general problem is given by

pnpxq “
n
ÿ

i“0

yilipxq. (2.1.4)
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It is clear from (2.1.3) that pn satisfies (2.0.1) and degppnq ď n. To prove uniqueness,
suppose q is another polynomial of degree ď n satisfying (2.0.1). Then

ppxjq ´ qpxjq “ 0 for every j “ 0, 1, . . . , n.

Since p ´ q is of degree ď n and p ´ q has pn ` 1q distinct zeros, it follows from the
Fundamental Theorem of Algebra that p´ q ” 0.

�

Remark 2.1.2.

1. The set of functions lipxq form the Lagrange basis polynomials. The formula (2.1.4) is
called Lagrange’s formula for the interpolating polynomial, where lipxjq “ δij. Given
two pairs of data px0, y0q, px1, y1q, p1pxq corresponds to linear interpolation having the
form

p1pxq “

ˆ

x´ x1

x0 ´ x1

˙

y0 `

ˆ

x´ x0

x1 ´ x0

˙

y1.

Given three pairs of data px0, y0q, px1, y1q, px2, y2q, p2pxq corresponds to quadratic in-
terpolation having the form

p2pxq “

„

px´ x1qpx´ x2q

px0 ´ x1qpx0 ´ x2q



y0 `

„

px´ x0qpx´ x2q

px1 ´ x0qpx1 ´ x2q



y1 `

„

px´ x0qpx´ x1q

px2 ´ x0qpx2 ´ x1q



y2.

2. Uniqueness is a strong property in the theory of interpolation. Very often, we derive other
formulas for the interpolation polynomial and they must coincide with the Lagrange’s
formula by uniqueness. Without uniqueness, the linear system V a “ y is not uniquely
solvable; this means that there exists y˚ such that there is no interpolating polynomial
of degree at most n satisfying (2.0.1).

Example 2.1.3. We compute the linear and quadratic interpolation to e0.826 using the following
values

x ex

x0 0.82 2.270500 y0

x1 0.83 2.293319 y1

x2 0.84 2.316367 y2

Observe that p2p0.826q is unique in this case, but we have three different choices for p1p0.826q.
One can show that p2p0.826q « 2.2841639. On the other hand, since 0.826 P r0.82, 0.83s, we
compute p1p0.826q using the first two pairs of data; this gives p1p0.826q « 2.2841914. Compar-
ing them to the exact value e0.826 « 2.2841638, we deduce that p2p0.826q is a better choice of
interpolation, which agrees with our intuition.
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If a function fpxq with sufficient regularity is given, we can approximate it using the La-
grange’s formula (2.1.4)

pnpx; fq “ pnpxq “
n
ÿ

i“0

fpxiqlipxq,

where n is the degree of approximation. The following theorem is a standard result concerning
the error of interpolation.

Theorem 2.1.4. Let x0, x1, . . . , xn be pn ` 1q distinct real numbers and let f be a given
real-valued function such that f P Cpn`1qpItq, where It is the smallest interval containing
tt, x0, x1, . . . , xnu with t some given real number. There exists ξ P It such that

fptq ´
n
ÿ

i“0

fpxiqliptq “
pt´ x0qpt´ x1q . . . pt´ xnq

pn` 1q!
f pn`1q

pξq. (IEF)

Proof. Note that the interpolation error formula (IEF) is trivial if t is any node points, so
suppose not. For all x P It, define the following quantity

Epxq “ fpxq ´
n
ÿ

i“0

fpxiqlipxq “ fpxq ´ pnpxq

Gpxq “ Epxq ´

„

φpxq

φptq



Eptq,

where Epxq is the error function and φpxq “
n
ź

j“0

px´ xjq. Observe that

1. Since both Epxq and φpxq are Cpn`1q functions on It, so is G P Cpn`1qpItq.

2. G has pn`2q distinct zeros tt, x0, x1, . . . , xnu on It. Applying the Mean Value Theorem
on the pn`1q subintervals between these zeros shows that G1 has at least pn`1q distinct
zeros on It. An induction argument shows that Gpjq has at least pn` 2´ jq distinct zeros
on It, 0 ď j ď n` 1.

Let ξ be a zero of Gpn`1q on It, i.e. Gpn`1qpξq “ 0 for some ξ P It. Computing Gpn`1q yields

Gpn`1q
pxq “ Epn`1q

pxq ´

„

φpn`1qpxq

φptq



Eptq

“ f pn`1q
pxq ´

„

pn` 1q!

φptq



Eptq

ùñ 0 “ Gpn`1q
pξq “ f pn`1q

pξq ´

„

pn` 1q!

φptq



Eptq.

The desired result follows from rearranging the equation above in terms of Eptq.
�

Example 2.1.5. Consider fpxq “ ex on r0, 1s. Choosing the linear interpolation p1pxq yields
the interpolation error

ex ´ p1pxq “
px´ x0qpx´ x1q

2
eξ,
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where ξ P
´

mintx, x0, x1u,maxtx, x0, x1u

¯

. Assume that x P px0, x1q, then

ex ´ p1pxq “
´px´ x0qpx1 ´ xq

2
eξ.

Let h “ x1 ´ x0 and consider gpxq “ px´ x0qpx1 ´ xq. Computing g1 gives

g1pxq “ x1 ´ x´ px´ x0q “ ´2x` x0 ` x1 “ 0 ðñ x “
x0 ` x1

2
.

Thus, g has a maximum at x “ px0 ` x1q{2, with value

g
´x0 ` x1

2

¯

“
h2

8
ùñ |ex ´ p1pxq| ď

ˆ

h2

8

˙

max
ξPr0,1s

eξ ď
h2e

8
.

2.2 Newton’s Divided Difference Interpolation Formula

2.2.1 Divided Difference

We first introducing a discrete version of the derivative of fpxq. Let x0, x1 be two distinct
numbers. Define the first order divided difference of fpxq as follows

f rx0, x1s “
fpx1q ´ fpx0q

x1 ´ x0

. (2.2.1)

Observe that if fpxq is differentiable on an interval containing x0 and x1, then it follows from
the mean value theorem that f rx0, x1s “ f 1pcq for some c P px0, x1q. If x0 and x1 are sufficiently
close, then

f rx0, x1s “ f 1
´x0 ` x1

2

¯

.

A nice feature about higher order divided differences is that one could obtain a recursive
formula using lower order divided differences. Let x0, x1, x2 be distinct real numbers. Define
the second order divided difference of fpxq as

f rx0, x1, x2s “
f rx1, x2s ´ f rx0, x1s

x2 ´ x0

(2.2.2)

Let x0, x1, x2, x3 be distinct real numbers. Define the third order divided difference of fpxq
as

f rx0, x1, x2, x3s “
f rx1, x2, x3s ´ f rx0, x1, x2s

x3 ´ x0

(2.2.3)

In general, for distinct real numbers x0, x1, . . . , xn, define the pn ` 1qth order divided dif-
ference of fpxq as

f rx0, x1, . . . , xns “
f rx1, . . . , xns ´ f rx0, . . . , xn´1s

xn ´ x0

(2.2.4)
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Theorem 2.2.1 (Mean Value Theorem for Divided Differences). Let n ě 1 and assume that
f P Cnrα, βs. For any pn ` 1q distinct numbers x0, x1, . . . , xn in rα, βs, we have the following
equality

f rx0, x1, . . . , xns “
f pnqpcq

n!
.

for some c P
´

mintx0, x1, . . . , xnu,maxtx0, x1, . . . , xnu
¯

.

• It relates the divided difference to the classical derivative for some unknown point.

Lemma 2.2.2. We have the following properties of divided differences:

(a) The nth divided difference is permutation invariant. More precisely, for any permutation
pi0, i1, . . . , inq of p0, 1, . . . , nq we have that

f rxi0 , xi1 , . . . , xins “ f rx0, x1, . . . , xns.

(b) One can relaxed the definition of divided difference by removing the requirement that
interpolation nodes are distinct. Define

f rx0, x0, . . . , x0s :“
f pnqpx0q

n!
.

For the first order divided difference of fpxq on a single node point x0,

f rx0, x0s :“ lim
x1Ñx0

f rx0, x1s “ lim
x1Ñx0

ˆ

fpx1q ´ fpx0q

x1 ´ x0

˙

.

2.2.2 Newton’s Divided Difference

In this subsection, we employ the concept of divided difference from Subsection 2.2.1 to define
another convenient form of the interpolation polynomial. Given pn` 1q distinct interpolation
nodes, let pnpxq be the polynomial interpolating fpxjq at xj for every j “ 0, . . . , n, where
degppnq ď n, i.e.

pnpxjq “ fpxjq for all j “ 0, . . . , n. (2.2.5)

We establish such interpolation polynomials pnpxq as a recursive relation involving divided dif-
ference.

Theorem 2.2.3. Consider the Newton’s divided difference interpolation polynomial
pn defined by

p1pxq “ fpx0q ` px´ x0qf rx0, x1s

p2pxq “ fpx0q ` px´ x0qf rx0, x1s
looooooooooooooomooooooooooooooon

p1pxq

`px´ x0qpx´ x1qf rx0, x1, x2s
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... “
...

...
...

pnpxq “ pn´1pxq ` px´ x0qpx´ x1q . . . px´ xn´1qf rx0, x1, . . . , xns
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

correction term

, n ě 1. (2.2.6)

Then pn solves the interpolation problem (2.2.5).

Proof. It is clear that for n ě 1, pnpxq is a polynomial of degree at most n by construction.
From Theorem 2.1.1, it suffices to show that these polynomials satisfy (2.2.5). Moreover, it
suffices to show that pjpxjq “ fpxjq for every j “ 0, 1, . . . , n by the recursive relation. The
case n “ 1 is clear and here we only prove it for the case n “ 2:

p2px2q “ fpx0q ` px2 ´ x0qf rx0, x1s ` px2 ´ x0qpx2 ´ x1qf rx0, x1, x2s

“ fpx0q ` px2 ´ x0qf rx0, x1s ` px2 ´ x1q

”

f rx1, x2s ´ f rx0, x1s

ı

“ fpx0q ` px1 ´ x0qf rx0, x1s ` px2 ´ x1qf rx1, x2s

“ fpx0q `

”

fpx1q ´ fpx0q

ı

`

”

fpx2q ´ fpx1q

ı

“ fpx2q.

�

Remark 2.2.4. By Theorem 2.1.1, the Newton’s divided difference formula must coincide
with the Lagrange’s formula (2.1.4). The former has the advantage over computation, in that
it can be defined recursively in terms of lower order interpolation polynomials plus some correc-
tion terms. Moreover, the coefficients of the polynomial are computed using divided differences.

To evaluate the Newton’s interpolation polynomial in an efficient manner, recall the recur-
sive relation (2.2.6)

pnpxq “ D0 ` px´ x0qD1 ` px´ x0qpx´ x1qD2 ` . . .` px´ x0q . . . px´ xn´1qDn, (2.2.7)

where Dj “ f rx0, . . . , xj´1s, j “ 0, 1, . . . , n. We can rewrite this in a nested formula

pnpxq “ D0`px´x0q

"

D1`px´x1q

”

D2` . . .`px´xn´2qrDn´1`px´xn´1qDns . . .
ı

*

(2.2.8)

For example,

p3pxq “ D0 ` px´ x0q

”

D1 ` px´ x1qrD2 ` px´ x2qD3s

ı

.

The nested formula (2.2.8) has the numerical advantage that it only involves n multiplications,
while (2.2.7) involves n2 multiplications. We are now ready to prove the Mean Value Theo-
rem for Divided Differences.

Proof of Theorem 2.2.1. Let t be a real number, distinct from the interpolating nodes x0, x1, . . . , xn.
Recall the Newton’s divided difference formula (2.2.6)

pn`1pxq “ pnpxq ` px´ x0qpx´ x1q . . . px´ xnqf rx0, x1, . . . , xn, ts.

Using pn`1ptq “ fptq, we obtain the error formula

fptq ´ pnptq “ pt´ x0qpt´ x1q . . . pt´ tnqf rx0, x1, . . . , xn, ts. (2.2.9)
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Comparing with the error formula in Theorem 2.1.4, we see that

f rx0, x1, . . . , xn, ts “
f pn`1qpξq

pn` 1q!
for some ξ P It. (2.2.10)

�

Remark 2.2.5. Setting n “ m´ 1, t “ xn`1, (2.2.10) is equivalent to

f rx0, x1, . . . , xms “
f pmqpξq

m!
.

It turns out that convergence is related to the distribution of nodes.

Example 2.2.6. Suppose fpxq “ sinpxq is approximated by p9pxq that interpolates f at 10
points in r0, 1s. Using the error formula from Theorem 2.1.4,

|fpxq ´ p9pxq| ď
1

10!

˜

9
ź

i“0

px´ xiq

¸

|f p10q
pξq| ď

1

10!
.

2.3 Further Discussion on Interpolation Error

Assume that f P Cpn`1qpIxq, where Ix is the smallest interval containing the points x0, x1, . . . , xn, x.
Define the following quantity

Cn`1 “ max
tPIx

|f pn`1q
ptq|.

From the interpolation error formula (IEF), one has to estimate the polynomial

φnpxq “
n
ź

i“0

px´ xiq “ px´ x0qpx´ x1q . . . px´ xnq,

independent of the interpolation nodes. A direct estimate on the error yields

max
xPIx

|fpxq ´ pnpxq| ď
Cn`1

pn` 1q!
max
xPIx

|φnpxq|.

1. Consider n “ 1. Then φ1pxq “ px´ x0qpx´ x1q and setting x1 ´ x0 “ h, one can show
that

max
x0ďxďx1

|φ1pxq| “
h2

4
ùñ max

x0ďxďx1
|fpxq ´ p1pxq| ď

C2h
2

8
.

This shows that the error is bounded in terms of distance between two nodes.

2. Consider n ě 2. Assume we have uniform/equidistant nodes tx0, x1, . . . , xnu, where
xj “ x0 ` jh, j “ 0, 1, . . . , n.
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(a) For the case n “ 2, one can show that

max
x0ďxďx2

|φ2pxq| “
2
?

3

9
h3
ùñ max

x0ďxďx2
|fpxq ´ p2pxq| ď

C2

?
3h2

27
.

This shows that the error is bounded in terms of (uniform) distance between nodes.
More importantly, this implies that the distance between x and x1 does not affected
the estimate, although it will make a difference for higher degree interpolation.

(b) For the case n “ 3, one can show that

max
x0ďxďx3

|φ3pxq| “ h4.

However, choosing x P px1, x2q yields a different bound

max
x1ďxďx2

|φ3pxq| “
9

16
h4.

(c) For the case n “ 6,

max
x0ďxďx6

|φ6pxq| “ 96h7, max
x2ďxďx4

|φ6pxq| “ 12h7.

We deduce that under the equidistant interpolating nodes assumption, the nodes should be
chosen such that the point of interest x is as close as possible to the midpoint of rx0, xns in
order to minimise the interpolation error.

The above discussion leads to a natural question: does the interpolating polynomial con-
verges to the true function as n ÝÑ 8 if the interpolating nodes are uniformly spaced between
them? More precisely, consider approximating a given function f on a given interval ra, bs
using interpolating polynomials. Construct an uniformly spaced subdivision of ra, bs, i.e. for
each n ě 1, define

h “
b´ a

n
, xj “ a` jh, j “ 0, 1, . . . , n.

and let pn be an polynomial interpolating fpxq at the interpolation nodes x0, x1, . . . , xn. Does

max
xPra,bs

|fpxq ´ pnpxq| ÝÑ 0 as n ÝÑ 8?

Surprisingly, the answer is no; there exists functions that are well-behaved but convergence
does not occur.

Example 2.3.1. Consider the Runge function fpxq “
1

1` x2
on r´5, 5s. It can be shown that

for any 3.64 ă |x| ă 5,

sup
nPN

|fpxq ´ pnpxq| “ 8.

Viewing f as a function in the complex plane C, we see that f has simple poles at x “ ˘i.
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2.4 Chebyshev Polynomials of First Kind

Consider the interpolation error over x P r´1, 1s. We are interested on the following quantity

min
x0,...,xn

max
xPr´1,1s

n
ź

j“0

|px´ xjq|.

The Chebyshev polynomials of the first kind are defined by the following recurrence
relation: Let T0pxq “ 1, T1pxq “ x and

Tn`1pxq “ 2xTnpxq ´ Tn´1pxq, n ě 1 (2.4.1)

Observe that Tn is a polynomial of degree n for each n ě 0 and Tnpxq “ 2n´1xn ` . . .. For
example,

T2pxq “ 2x2
´ 1

T3pxq “ 4x3
´ 3x

T4pxq “ 8x4
´ 8x2

` 1.

Lemma 2.4.1. For any x P r´1, 1s, the Chebyshev polynomials of the first kind have the
following closed form expression

Tnpxq “ cos
`

n cos´1
pxq

˘

, n ě 0. (2.4.2)

Proof. First, the expression (2.4.2) is well-defined under the assumption that x P r´1, 1s. The
case n “ 0, 1 is trivial. For n ě 2, we need to show that (2.4.2) coincides with the recursive
relation (2.4.1). Using the double-angle formula,

cosppn˘ 1qθq “ cos θ cospnθq ¯ sin θ sinpnθq

ùñ cosppn` 1qθq “ 2 cos θ cospnθq ´ cosppn´ 1qθq

The desired result follows by setting θ “ cos´1pxq.
�

Remark 2.4.2. It follows that |Tnpxq| ď 1 and Tnpcosxq “ cospnxq for all x P r´1, 1s.
Moreover,

Tn

ˆ

cos

ˆ

jπ

n

˙˙

“ p´1qj, 0 ď j ď n (2.4.3)

Tn

ˆ

cos

ˆ

p2j ` 1qπ

2n

˙˙

“ 0, 0 ď j ď n´ 1. (2.4.4)

Theorem 2.4.3. If p is a monic polynomial of degree n, then

}p}8 “ max
xPr´1,1s

|ppxq| ě 21´n.
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Proof. We argue by contradiction. Suppose the given estimate fails to hold. This means that

|ppxq| ă 21´n for all x P r´1, 1s.

Normalising the highest term in Chebyshev polynomials of the first kind, define a monic poly-
nomial q “ 21´nTn which has degree at most n. Let xj “ cos

`

jπ
n

˘

, 0 ď j ď n. It follows from
Remark 2.4.2 that

|ppxjq| ă 21´n
“ p´1qjqpxjq. (2.4.5)

On the other hand, we have the trivial inequality

p´1qjppxjq ď |ppxjq|. (2.4.6)

Combining (2.4.5) and (2.4.6) gives

p´1qjrqpxjq ´ ppxjqs ą 0, 0 ď j ď n. (2.4.7)

Now, (2.4.7) shows that the function q ´ p oscillates in sign pn ` 1q times on r´1, 1s, which
implies that q´p has n distinct roots on p´1, 1q. This contradicts the Fundamental Theorem
of Algebra, since q ´ p is a polynomial of degree ď n´ 1 due to the assumption that both q
and p are monic polynomials.

�

Theorem 2.4.4 (Interpolation error for Chebyshev nodes). Given a real-valued function f P
Cpn`1qpIxq, suppose the interpolating nodes txju

n
j“0 are chosen to be zeros of the Chebyshev

polynomial of the first kind Tn`1 given by

xj “ cos

ˆ

p2j ` 1qπ

2n` 2

˙

, 0 ď j ď n.

and Ix is the smallest interval containing tx, x0, x1, . . . , xnu. The interpolation error formula
satisfies

|fpxq ´ pnpxq| ď
1

2npn` 1q!
max
ξPr´1,1s

|f pn`1q
pξq|.

Proof. First, a direct estimate on the interpolation error over the interval x P r´1, 1s gives

|fpxq ´ pnpxq| ď
1

pn` 1q!
max
ξPr´1,1s

|f pn`1q
pξq| max

xPr´1,1s

ˇ

ˇ

ˇ

ˇ

ˇ

n
ź

j“0

x´ xj

ˇ

ˇ

ˇ

ˇ

ˇ

.

Theorem 2.4.3 gives

max
xPr´1,1s

ˇ

ˇ

ˇ

ˇ

ˇ

n
ź

j“0

x´ xj

ˇ

ˇ

ˇ

ˇ

ˇ

ě 21´pn`1q
“ 2´n.

One can show that this bound is actually attained if one chooses the interpolation nodes xj to
be zeros of Chebyshev polynomials of the first kind.

�
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Remark 2.4.5. Suppose f is now a Cpn`1q function on ra, bs. One can obtain a function g on
r´1, 1s equivalent to f using an affine transformation, given by

gpxq “ f

ˆ

pb` aq ` xpb´ aq

2

˙

, ´1 ď x ď 1.

This can be found by guessing an ansatz of the form y “ Cx `D and solving for C,D given
that yp´1q “ a, yp1q “ b. The “transformed” Chebyshev nodes has the form

x̂j “
a` b

2
`

ˆ

b´ a

2

˙

cos

ˆ

p2j ` 1qπ

2n` 2

˙

, 0 ď j ď n,

Since gpnqpxq “

ˆ

b´ a

2

˙n

f pnqpxq, it follows from Theorem 2.4.4 that the interpolation error of

a function f P Cpn`1qra, bs satisfies

|fpxq ´ pnpxq| ď
1

2npn` 1q!

ˆ

b´ a

2

˙n

max
ξPr´1,1s

|f pn`1q
pξq|.

2.5 Approximation Theory

The choice of using polynomials in approximating continuous functions is justified by the
following two theorems:

1. Weierstrass approximation theorem, which states that every continuous function on
a closed interval can be uniformly approximated by a polynomial function to any desired
accuracy. If f is only bounded, then we only have pointwise convergence. Note that a
constructive proof is given using the Bernstein polynomials

pnpxq “
n
ÿ

k“0

ˆ

n

k

˙

f

ˆ

k

n

˙

xkp1´ xqn´k, 0 ď x ď 1.

2. Taylor’s theorem, which states that for any f P Cpn`1qra, bs,

fpxq “ pnpxq `Rn`1pxq,

where
$

’

’

&

’

’

%

pnpxq “ fpx0q ` px´ x0qf
1
px0q ` . . .`

f pnqpx0q

n!
px´ x0q,

Rn`1pxq “
f pn`1qpξq

pn` 1q!
px´ x0q

n`1,

for some ξ between x and x0.
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2.5.1 The Minimax Approximation Problem

Let f be a continuous function on ra, bs. Since there are many polynomial approximations
ppxq to fpxq, it is natural to ask what is the best possible accuracy that can be obtained using
polynomials of degree at most n ě 0. This raises another question: how do we qualitatively
describe accuracy of polynomial approximations? One can measure the difference using the L2

norm or L8 norm. The latter leads to the minimax error:

ρnpfq “ inf
qPRrxs : degpqqďn

}f ´ q}8 (2.5.1)

This is again an existence and uniqueness problem. If such polynomial approximation q˚pxq
exists, i.e.

ρnpfq “ }f ´ q
˚
}8,

then q˚pxq is called the minimax approximation to fpxq on ra, bs.

Example 2.5.1. We wish to compute the minimax polynomial approximation q˚1 pxq to the
function ex on the interval r´1, 1s. Let q˚1 pxq “ a0 ` a1x, we present a geometrical argument
here. Let εpxq “ ex ´ ra0 ` a1xs and ρ1 “ maxxPr´1,1s |εpxq|. Observe that

1. q˚1 and ex must be equal at 2 points in r´1, 1s, say at ´1 ă x1 ă x2 ă 1; otherwise the
approximation can be improved by moving the graph of q˚1 appropriately.

2. The maximum error ρ1 is attained at exactly three points, namely

εp´1q “ εpx3q “ εp1q “ ρ1, where x3 P px1, x2q.

3. Since εpxq has a relative minimum at x3, we have ε1px3q “ 0.

This yields four equations
$

’

’

’

&

’

’

’

%

e´1 ´ ra0 ´ a1s “ ρ1

e´ ra0 ` a1s “ ρ1

ex3 ´ ra0 ` a1x3s “ ρ1

ex3 ´ a1 “ 0,

which has solution

a1 “
e´ e´1

2
« 1.1752

x3 “ lnpa1q « 0.1614

ρ1 “
e´1

2
`
x3

4
pe´ e´1

q « 0.2788

a0 “ ρ1 ` p1´ x3qa1 « 1.2643.

Hence, q1 ˚ pxq “ 1.2643 ` 1.1752x and ρ1 « 0.2788. We note that the error resulting from
Taylor’s approximation is approximately 0.718.

Remark 2.5.2. In general, one uses Remes algorithm to construct minimax approximation.
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Theorem 2.5.3 (Chebyshev Equioscillation Theorem). Given any f P Cra, bs, for any n ě 0
there exists a unique polynomial q˚npxq of degree at most n for which

ρnpfq “ }f ´ q
˚
n}8.

Such polynomial is uniquely characterised by the following property: there are at least pn ` 2q
points satisfying a ď x0 ă x1 ă . . . ă xn ă xn`1 ď b for which

fpxjq ´ q
˚
npxjq “ σpf, nqp´1qjρnpfq, j “ 0, 1, . . . , n` 1,

where σpf, nq “ ˘1 depending on the function f and n.

2.5.2 The Least Squares Approximation Problem

Due to the difficulty in computing the minimax polynomial approximation, one usually perform
an intermediate approximation called the Least Squares Approximation. Essentially, one
replaces the L8 norm in (2.5.1) with the L2 norm

}g}22 “

ż b

a

|gpxq|2 dx, g P Cra, bs.

This leads to define

Mnpfq “ inf
rPRrxs : degprqďn

}f ´ r}2. (2.5.2)

Example 2.5.4. Consider fpxq “ ex on r´1, 1s and define r1pxq “ b0 ` b1x. We wish to
minimise

}f ´ r1}
2
2 “

ż 1

´1

rex ´ b0 ´ b1xs
2 dx :“ F pb0, b1q,

where F pb0, b1q is a quadratic polynomial in b0, b1. To find a minimum, we set
BF

Bb0

“
BF

Bb1

“ 0.

Then

ż 1

´1

B

Bb0

´

ex ´ b0 ´ b1x
¯2

dx “ ´2

ż 1

´1

´

ex ´ b0 ´ b1x
¯

dx “ 0

ż 1

´1

B

Bb1

´

ex ´ b0 ´ b1x
¯2

dx “ 2

ż 1

´1

´

ex ´ b0 ´ b1x
¯

p´xq dx “ 0.

Solving for b0 and b1 yields

b0 “
1

2

ż 1

´1

ex dx “ sinhp1q « 1.1752

b1 “
3

2

ż 1

´1

xex dx “ 3e´1
« 1.1036.

Hence, r˚1 pxq “ 1.1752` 1.1036x and it can be shown that }ex ´ r˚1}8 « 0.44.
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It is often useful to consider approximation of the form

r˚npxq “
n
ÿ

j“0

pf, φjqwφj,

where p¨, ¨qw is now a weighted inner product defined by

pf, gqw “

ż b

a

wpxqfpxqgpxq dx

for some nonnegative weight function wpxq on pa, bq and pφjq is an orthonormal (with respect
to p¨, ¨qw) set of polynomials. Some examples:

wpxq “ 1, Pnpxq “
p´1qn

2nn!

dn

dxn
rp1´ x2

q
n
s, n ě 1, x P r´1, 1s. (Legendre)

wpxq “
1

?
1´ x2

, Tnpxq “ cos
`

n cos´1
pxq

˘

, n ě 0, x P r´1, 1s. (Chebyshev)

wpxq “ e´x, Lnpxq “
1

n!e´x
dn

dxn
pxne´xq, n ě 0, x P r0,8q (Laguerre)

2.6 Problems

1. Given the interpolation data (points) (0,2), (0.5,5), (1,4),

(a) Find the function fpxq “ a0 ` a1 cospπxq ` a2 sinpπxq, which interpolates the given
data;

Solution: Substituting the interpolation data into the function fpxq yields the
following system of linear equations

2 “ a0 ` a1 cosp0q ` a2 sinp0q ùñ 2 “ a0 ` a1 (2.6.1)

5 “ a0 ` a1 cos
´π

2

¯

` a2 sin
´π

2

¯

ùñ 5 “ a0 ` a2 (2.6.2)

4 “ a0 ` a1 cospπq ` a2 sinpπq ùñ 4 “ a0 ´ a1. (2.6.3)

Adding (2.6.1) and (2.6.3) yields 6 “ 2a0 ùñ a0 “ 3. We then solve for a1, a2

a1 “ 2´ a0 “ 2´ 3 “ ´1 and a2 “ 5´ a0 “ 5´ 3 “ 2.

Hence, the function fpxq that interpolates the given data is

fpxq “ 3´ cospπxq ` 2 sinpπxq.

(b) Find the quadratic polynomial interpolating the data.

Solution: Denote the given interpolation points as

px0, y0q “ p0, 2q, px1, y1q “ p0.5, 5q, px2, y2q “ p1, 4q.
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We know that the quadratic interpolating polynomial p2pxq has the form

p2pxq “
2
ÿ

i“0

lipxqyi, where lipxq “
2
ź

j‰i

ˆ

x´ xj
xi ´ xj

˙

.

We now compute all the lipxq’s:

l0pxq “
px´ x1qpx´ x2q

px0 ´ x1qpx0 ´ x2q
“
px´ 0.5qpx´ 1q

p0´ 0.5qp0´ 1q
“ p2x´ 1qpx´ 1q

l1pxq “
px´ x0qpx´ x2q

px1 ´ x0qpx1 ´ x2q
“

px´ 0qpx´ 1q

p0.5´ 0qp0.5´ 1q
“ ´4xpx´ 1q

l2pxq “
px´ x0qpx´ x1q

px2 ´ x0qpx2 ´ x1q
“
px´ 0qpx´ 0.5q

p1´ 0qp1´ 0.5q
“ xp2x´ 1q.

Hence,

p2pxq “
2
ÿ

i“0

lipxqyi “ p2x´ 1qpx´ 1qp2q ´ 4xpx´ 1qp5q ` xp2x´ 1qp4q

“ p2x´ 1qr2x´ 2` 4xs ´ 20xpx´ 1q

“ p2x´ 1qp6x´ 2q ´ 20xpx´ 1q

“ 12x2
´ 10x` 2´ 20x2

` 20x

“ ´8x2
` 10x` 2.

2. Bound the error in terms of h ą 0 of the quadratic interpolation to fpxq “ ex on r0, 1s
with evenly spaced interpolation points x0, x1 “ x0 ` h, x2 “ x0 ` 2h. Assume that
x0 ă x ă x2.

Solution: Suppose x0 ă x ă x2. First, a direct estimate yields

|ex ´ p2pxq| “

ˇ

ˇ

ˇ

ˇ

px´ x0qpx´ x1qpx´ x2q

3!
eξ
ˇ

ˇ

ˇ

ˇ

for some ξ P rx0, x2s

ď

ˆ

ex2

6

˙

max
xPrx0,x2s

|px´ x0qpx´ x1qpx´ x2q|

ď

´e

6

¯

max
xPrx0,x2s

|gpxq|.

Since the interpolation points are evenly spaced, to find the extrema of gpxq over
rx0, x2s, it is equivalent (by shifting along the x-axis) to find the extrema of the
function

Gpxq “ px` hqxpx´ hq “ x3
´ h2x over r´h, hs.

Setting G1px˚q “ 0 and solving for x˚ yields

0 “ G1px˚q “ 3px˚q2 ´ h2
ùñ px˚q2 “

h2

3
ùñ x˚ “ ˘

h
?

3
.



Interpolation Theory 37

Since Gpxq is a cubic function with three distinct zeros, these critical points x˚’s must
correspond to exactly one local minimum and one local maximum. Because Gpxq is

an odd function,

ˇ

ˇ

ˇ

ˇ

G

ˆ

h
?

3

˙
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

G

ˆ

´
h
?

3

˙
ˇ

ˇ

ˇ

ˇ

. Thus,

max
xPrx0,x2s

|gpxq| “ max
xPr´h,hs

|Gpxq| “

ˇ

ˇ

ˇ

ˇ

G

ˆ

´
h
?

3

˙
ˇ

ˇ

ˇ

ˇ

“

ˆ

´
h
?

3
` h

˙ˆ

´
h
?

3

˙ˆ

´
h
?

3
´ h

˙

“ h3

ˆ

´
1
?

3
` 1

˙ˆ

´
1
?

3

˙ˆ

´
1
?

3
´ 1

˙

“
h3

?
3

ˆ

2

3

˙

“
2h3

3
?

3
.

Hence, the error of the quadratic interpolation to fpxq “ ex on r0, 1s with evenly
spaced interpolation points x0, x1, x2, x0 ă x ă x2, satisfies the bound

|ex ´ p2pxq| ď
´e

6

¯

ˆ

2h3

3
?

3

˙

“
eh3

9
?

3
“

?
3eh3
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.

3. (a) Suppose you are given symmetric data

pxi, yiq, i “ ´n,´n` 1, . . . , n´ 1, n,

such that
x´i “ ´xi and y´i “ ´yi, i “ 0, 1, . . . , n. (2.6.4)

What is the required degree of the interpolating polynomial p, where xi’s are distinct
nodes? Show that the interpolating polynomial is odd, i.e. ppxq “ ´pp´xq for all
real numbers x.

Solution: Since we were given p2n`1q distinct points, it follows from Theorem
2.1.1 the unique interpolating polynomial ppxq is of degree at most 2n. We
exploit the uniqueness of ppxq to show that ppxq is an odd function. Consider
the polynomial qpxq :“ ´pp´xq. Then

qpxjq “ ´pp´xjq “ ´ppx´jq “ ´y´j “ yj

qpx´jq “ ´pp´x´jq “ ´ppxjq “ ´yj “ y´j.

This implies that qpxq also interpolates the given data and it follows from the
uniqueness of interpolating polynomial that

ppxq ” qpxq “ ´pp´xq.

Finally, since ppxq is an odd function, it must be the case that ppxq only contains
terms with odd degree. Consequently, the required degree of the interpolating
polynomial ppxq is 2n´ 1.
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Remark: We could deduce the same result geometrically. We first find the unique
polynomial p`pxq interpolating pxi, yiq, i “ 0, 1, . . . , n, which is of degree n. Since
the given data is symmetric, the unique polynomial interpolating px´i, y´iq, i “
0, 1, . . . , n is simply the odd extension of p`pxq. Counting the number of critical
points leads us to deduce that the required degree of the interpolating polynomial
is 2n´ 1.

(b) Let lipxq be the Lagrange basis functions with distinct nodes x0, x1, . . . , xn with
n “ 2017. Prove that

2017
ÿ

i“0

lipxq “ 1.

for all x.

Solution: We exploit the uniqueness property of the interpolating polynomial.
Consider pn ` 1q distinct nodes x0, x1, . . . , xn with corresponding values yi “ 1
for every i “ 0, 1, . . . , n, where n “ 2017. The interpolating polynomial in
Lagrange form is given by

pnpxq “ p2017pxq “
2017
ÿ

i“0

lipxqyi “
2017
ÿ

i“0

lipxq.

At the same time, the constant function ppxq ” 1, which is a polynomial of
degree 0, also interpolates the data points pxi, fpxiqq, i “ 0, 1, . . . , 2017. We

conclude by uniqueness that 1 “
2017
ÿ

i“0

lipxq for all x.

Remark: The result holds for any arbitrary but finite n ě 1.

4. (a) Consider finding a rational function ppxq “
a` bx

1` dx
that satisfies

ppxiq “ yi, i “ 1, 2, 3,

with distinct x1, x2, x3. Does such a function ppxq exists, or are additional conditions
needed to ensure existence and uniqueness of ppxq?

Solution: Given data points pxi, yiq, i “ 1, 2, 3 with distinct x1, x2, x3, con-

sider a rational function p of the form ppxq “
a` bx

1` dx
. Suppose we impose the

condition that ppxiq “ yi for every i “ 1, 2, 3. First, expanding ppxiq “ yi gives

a` bxi
1` dxi

“ yi ùñ a` bxi “ yip1` dxiq ùñ a` pxiqb´ pxiyiqd “ yi. (2.6.5)

where we require 1` dxi ‰ 0, i “ 1, 2, 3. Since (2.6.5) is true for each i “ 1, 2, 3,
we obtain three linear equations with unknowns a, b, d. In matrix form, this
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system of linear equations can be wrritten as

Mz “

»

—

—

–

1 x1 ´x1y1

1 x2 ´x2y2

1 x3 ´x3y3

fi

ffi

ffi

fl

»

—

—

–

a

b

d

fi

ffi

ffi

fl

“

»

—

—

–

y1

y2

y3

fi

ffi

ffi

fl

“ y. (2.6.6)

The linear system Mz “ y has a unique solution if and only if the matrix M
is nonsingular, or equivalently, detpMq ‰ 0. Computing detpMq by expanding
the first column yields

detpMq “

∣∣∣∣∣∣x2 ´x2y2

x3 ´x3y3

∣∣∣∣∣∣´
∣∣∣∣∣∣x1 ´x1y1

x3 ´x3y3

∣∣∣∣∣∣`
∣∣∣∣∣∣x1 ´x1y1

x2 ´x2y2

∣∣∣∣∣∣
“ r´x2x3y3 ` x2x3y2s ´ r´x1x3y3 ` x1x3y1s ` r´x1x2y2 ` x1x2y1s

“ rx1y1x2 ´ x1y1x3s ` rx2y2x3 ´ x2y2x1s ` rx3y3x1 ´ x3y3x2s

“ x1y1px2 ´ x3q ` x2y2px3 ´ x1q ` x3y3px1 ´ x2q.

Thus, for any given data points pxi, yiq, i “ 1, 2, 3, the given interpolating prob-
lem has a unique solution if and only if

x1y1px2 ´ x3q ` x2y2px3 ´ x1q ` x3y3px1 ´ x2q ‰ 0.

Below, we investigate a few special cases.

i. WLOG, suppose x1 “ 0. Then detpMq reduces to

detpMq “ x2y2x3 ´ x3y3x2 “ x2x3py2 ´ y3q.

Since x2, x3 are both nonzero, for this particular case, the given interpolating
problem has a unique solution if and only if y2 ‰ y3.

ii. Suppose y1 “ y2 “ y3 “ 0, then detpMq “ 0 and the interpolating prob-
lem has infinitely many solutions z P R3 of the form p0, 0, λqT , λ any real
numbers.

iii. WLOG, suppose y1 “ y2 “ 0, y3 ‰ 0. Then detpMq reduces to

detpMq “ x3y3px1 ´ x2q.

Since x1 ‰ x2, if y1 “ y2 “ 0, the given interpolating problem has a unique
solution if and only if px3, y3q ‰ p0, 0q.

(b) Let x0, x1, . . . , xn be distinct real points, and consider the following interpolation
problem. Choose a function

Fnpxq “
n
ÿ

j“0

cje
jx,

such that
Fnpxiq “ yi, i “ 0, 1, . . . , n,

with tyiu
n
i“0 the given data. Show that there is a unique choice of c0, . . . , cn.
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Solution: Introducing a change of variable z “ ex, the function Fnpxq becomes:

Fnpxq ” gnpzq “
n
ÿ

j“0

cjz
j.

The distinct real points tx0, x1, . . . , xnu becomes tex0 , ex1 , . . . , exnu which are also
distinct real points since the exponential function is injective. The interpolating
problem now takes the following form: find gnpxq such that gnpzjq “ yj, j “
0, 1, . . . , n. Since gnpzq is a polynomial of degree at most n, it follows from
Theorem 2.1.1 that there exists a unique choice of tc0, . . . , cnu.

5. Consider the function fpxq “
1

x2 ` 1
on the interval r´5, 5s. For each n ě 1, define

h “ 10{n and xj “ ´5` jh for j “ 0, 1, . . . , n. Let pnpxq be the polynomial of degree n
which interpolates f at the nodes x0, x1, . . . , xn. Compute pn for n “ 1, 2, . . . , 20. Plot
fpxq and pnpxq for each n. Estimate the maximum error |fpxq ´ pnpxq| for x P p´5, 5q.
Discuss what you find.

Solution: We choose to find the interpolating polynomial in Newton’s form. We first
compute all the required higher order divided differences, pnpxq can then be found
by using a nested form of polynomial multiplication, i.e.

pnpxq “ D0`px´x0q

"

D1`px´x1q

”

D2`. . .`px´xn´2qrDn´1`px´xn´1qDns . . .
ı

*

,

where Dj “ f rx0, . . . , xj´1s, j “ 0, 1, . . . , n. The numerical result shows that the in-
terpolating polynomials are all even functions, this is due to f being an even function.

We choose to measure the interpolation error using the L8 norm, i.e. for each
pnpxq, n “ 1, 2, . . . , 20, we compute

En “ max
xPr´5,5s

|fpxq ´ pnpxq| or equivalently En “ ´

„

min
xPr´5,5s

´|fpxq ´ pnpxq|



The command fminbnd is applicable to the second expression of En. Note that fminbnd
returns the argmin of the function ´|fpxq´ppxq| over r´5, 5s, but unfortunately this
does not correspond to the absolute minimum over r´5, 5s. To overcome this, we
plot the graph of ´|fpxq ´ ppxq|, locate the argmin x˚ of its absolute minimum over
r´5, 5s from the graph and apply fminbnd on an interval around x˚. We present the
interpolation error En for different n “ 1, 2, . . . , 20 in the following table.
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n Interpolation error En

1 0.961538461538462

2 0.646229268183428

3 0.707013574660634

4 0.438357141903084

5 0.432692307692308

6 0.616947968654934

7 0.247358606559315

8 1.045176657474316

9 0.300297936742191

10 1.915658914837769

n Interpolation error En

11 0.556775115226897

12 3.663394060743355

13 1.070105627260649

14 7.194881834955054

15 2.107561131513046

16 14.393854684643465

17 4.224288081812976

18 29.190582028039042

19 8.579090824899694

20 59.822308737051372

The interpolation error is consistent with the result stated in the lecture, namely for
any 3.64 ă |x| ă 5 we have that

sup
nPN

|fpxq ´ pnpxq| “ 8.
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Chapter 3

Numerical Integration

In this chapter, we derive and analyse various numerical methods for approximating definite
integrals of the form

Ipfq “

ż b

a

fpxq dx, (3.0.1)

with ra, bs some finite interval. The approximation of Ipfq is commonly known as numer-
ical integration or quadrature. There are several motivations for performing numerical
integration

1. It is often the case that the integrand fpxq are only known at few points.

2. Not every integrand has an antiderivative that is an elementary function.

3. Even if an explicit antiderivative formula exists, it might not be the most efficient way of
computing the definite integral. This is the case when the antiderivative is given as an
infinite sum or product.

The simplest method for approximating (3.0.1) is as follows. Given an integrand fpxq on
ra, bs, construct a family of approximating function pfnq, n ě 1, where n refers to the number
of subintervals on ra, bs. Define

Inpfq :“ Ipfnq “

ż b

a

fnpxq dx. (3.0.2)

and the error function

Enpfq :“ Ipfq ´ Inpfq “

ż b

a

”

fpxq ´ fnpxq
ı

dx. (3.0.3)

In a relatively simple case, one usually requires that }f ´ fn}8 ÝÑ 0 as n ÝÑ 8, since

|Enpfq| ď

ż b

a

|fpxq ´ fnpxq| dx ď pb´ aq}f ´ fn}8 ÝÑ 0 as n ÝÑ 8.

43
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3.1 The Trapezoidal and Simpson’s Rule

Most quadrature formulas are based on approximating fpxq with polynomial or piecewise poly-
nomial interpolation. We consider such cases with evenly spaced node points for the remaining
section.

3.1.1 Simple Trapezoidal Rule

We approximate the integrand fpxq using linear interpolation p1pxq, this simply refers to the
straight line joining the points pa, fpaqq and pb, fpbqq. Referring to the Lagrange’s formula
(2.1.4), we have the following approximation

fpxq « p1pxq “

ˆ

x´ b

a´ b

˙

fpaq `

ˆ

x´ a

b´ a

˙

fpbq “
pb´ xqfpaq ` px´ aqfpbq

b´ a
.

This gives rise to the Simple Trapezoidal Rule

I1pfq “

ż b

a

pb´ xqfpaq ` px´ aqfpbq

b´ a
dx “

ˆ

b´ a

2

˙

rfpaq ` fpbqs, (Simple Trapezoidal)

which is simply the area of trapezoid.

Error Analysis

To analyse the error, assume f P C2ra, bs. For a linear interpolant, the interpolation error
formula (IEF) from Theorem 2.1.4 gives

fpxq ´
pb´ xqfpaq ` px´ aqfpbq

b´ a
“ fpxq ´ p1pxq “ px´ aqpx´ bq

f2pξq

2

“ px´ aqpx´ bqf ra, b, xs,

where f ra, b, xs is the second order divided difference. Since gpxq “ px´aqpx´ bq ď 0 on ra, bs,
it follows from the Mean Value Theorem for Integrals that there exists an ξ P ra, bs such
that

E1pfq “

ż b

a

fpxq ´ p1pxq dx “

ż b

a

px´ aqpx´ bqf ra, b, xs dx

“ f ra, b, ξs

ż b

a

px´ aqpx´ bq dx

“

„

f2pηq

2

 „

´
1

6
pb´ aq3



, for some η P ra, bs.

Writing b´ a as h, we have

E1pfq “ ´

„

f2pηq

12



h3 for some η P ra, bs. (3.1.1)
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Observe that the simple trapezoidal rule is exact for polynomials of degree at most 1. A bad
feature of the simple trapezoidal rule is that it does not serve as a good approximation to
oscillatory functions. For completeness, we include the proof of the mean value theorem for
integrals.

Theorem 3.1.1 (Mean Value Theorem For Integrals). Suppose f, g are continuous on ra, bs
and g does not change sign on ra, bs. There exists c P ra, bs such that

ż b

a

fpxqgpxq dx “ fpcq

ż b

a

gpxq dx.

Proof. By Extreme Value Theorem, f attains its extremum, i.e. there exists x0 ă x1 (WLOG)
such that

fpx0q “ m “ min
xPra,bs

fpxq, fpx1q “M “ min
xPra,bs

fpxq.

Consider the continuous function hpxq “ fpxq

ż b

a

gpsq ds on ra, bs. WLOG, suppose g is non-

negative on ra, bs. We have that

mgpxq ď fpxqgpxq ďMgpxq for all x P ra, bs

ùñ hpx0q “ m

ż b

a

gpxq dx ď

ż b

a

fpxqgpxq dx ďM

ż b

a

gpxq dx “ hpx1q for all x P ra, bs.

It follows from the Intermediate Value Theorem that there exists an c P ra, bs such that

hpcq “

ż b

a

fpxqgpxq dx “ fpcq

ż b

a

gpxq dx.

�

3.1.2 Composite Trapezoidal Rule

If pb ´ aq is not sufficiently small, it follows from the previous error analysis that the simple
trapezoidal rule is not very useful. For such an integral, we subdivide the interval ra, bs into
n evenly spaced subintervals and apply (Simple Trapezoidal) onto each of these subintervals.
More precisely, for any n ě 1, define

h “
b´ a

n
, xj “ a` jh for j “ 0, 1, . . . , n.

Then

Ipfq “

ż b

a

fpxq dx “
n
ÿ

j“1

ż xj

xj´1

fpxq dx

“

n
ÿ

j“1

¨

˚

˚

˝

h

2
rfpxj´1q ` fpxjqs

looooooooooomooooooooooon

simple trapezoidal rule

´
h3

12
f2pηjq

looomooon

error

˛

‹

‹

‚
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“

n
ÿ

j“1

ˆ

h

2
rfpxj´1q ` fpxjqs

˙

´

n
ÿ

j“1

h3

12
f2pηjq,

where ηj P rxj´1, xjs, j “ 1, . . . , n. Denoting fj : fpxjq, j “ 0, . . . , n, the first sum is defined as
the Composite Trapezoidal Rule, given by

Inpfq “ h

ˆ

1

2
f0 ` f1 ` f2 ` . . .` fn´1 `

1

2
fn

˙

, n ě 1. (Composite Trapezoidal)

Error Analysis

Assume f P C2ra, bs. For the error in Inpfq,

Enpfq “ Ipfq ´ Inpfq “ ´
n
ÿ

j“1

h3

12
f2pηjq, (3.1.2)

i.e. the error consists of sum of local errors. One can obtain an average estimate for the sum
of local errors by looking at the global behaviour of the integrand fpxq. Since f P C2ra, bs,
f2 P Cra, bs and it follows from the Extreme Value Theorem that

min
xPra,bs

f2pxq ď f2pηjq ď max
xPra,bs

f2pxq for each 1 ď j ď n. (3.1.3)

Summing (3.1.3) from j “ 1 to j “ n and dividing by n yields

min
aďxďb

f2pxq ď
1

n

n
ÿ

j“1

f2pηjq ď max
aďxďb

f2pxq.

It follows from the Intermediate Value Theorem that there exists η P ra, bs such that

f2pηq “M “
1

n

n
ÿ

j“1

f2pηjq.

Thus, (3.1.2) reduces to

Enpfq “ ´
h3

12

n
ÿ

j“1

f2pηjq “ ´
h3n

12
f2pηq “ ´

„

pb´ aqf2pηq

12



h2 for some η P ra, bs. (3.1.4)

We see that Enpfq “ Oph2q as h ÝÑ 0. Observe that the composite trapezoidal rule is exact
if f is a polynomial of degree at most 1.

Remark 3.1.2. A similar argument produces another error estimate for the composite trape-
zoidal rule. Indeed,

lim
nÑ8

Enpfq

h2
“ ´

1

12
lim
nÑ8

˜

n
ÿ

j“1

f2pηjqh

¸

looooooomooooooon

Riemann sum

“ ´
1

12

ż b

a

f2pxq dx “ ´
1

12
rf 1pbq ´ f 1paqs,
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3.1.3 Simpson’s Rule

To improve upon the simple trapezoidal rule, we approximate the integrand fpxq using quadratic
interpolant p2pxq instead. Since we require at least three interpolating nodes for quadratic in-

terpolation, we choose the third node to be the midpoint c “
a` b

2
. Thus,

I2pfq “

ż b

a

p2pxq dx

“

ż b

a

„

px´ cqpx´ bq

pa´ cqpa´ bq
fpaq `

px´ aqpx´ cq

pb´ aqpb´ cq
fpbq `

px´ aqpx´ bq

pc´ aqpc´ bq
fpcq



dx.

Let h “
b´ a

2
, performing a change of variable x “ y ` a,

ż b

a

px´ cqpx´ bq

pa´ cqpa´ bq
dx “

1

2h2

ż a`2h

a

px´ cqpx´ bq dx

“
1

2h2

ż 2h

0

py ` a´ cqpy ` a´ bq dy

“
1

2h2

ż 2h

0

py ´ hqpy ´ 2hq dy

“
1

2h2

ż 2h

0

ry2
´ 3hy ` 2h2

s dy

“

ˆ

1

2h2

˙ˆ

2h3

3

˙

“
h

3
.

Repeating the same procedure, we obtain

I2pfq “ S2pfq “
h

3

„

fpaq ` 4f

ˆ

a` b

2

˙

` fpbq



, h “
b´ a

2
. (Simpson)

This is called the Simpson’s Rule.

Error Analysis

Assume f P C4ra, bs. The interpolation error formula (IEF) from Theorem 2.1.4 gives

E2pfq “

ż b

a

”

fpxq ´ p2pxq
ı

dx “

ż b

a

px´ aqpx´ cqpx´ bq
f p3qpξq

3!
dx

“

ż b

a

px´ aqpx´ cqpx´ bqf ra, b, c, xs,

where f ra, b, c, xs is the third order divided difference. Ideally, we would like to use the mean
value theorem for integrals again, but it is not applicable here since gpxq “ px´aqpx´cqpx´bq

changes sign at x “ c “
a` b

2
. Define

wpxq “

ż x

a

pt´ aqpt´ cqpt´ bq dt.
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Clearly, wpaq “ 0 by construction. A symmetry argument (since c is the midpoint between
a and b) shows that wpbq “ 0, while a critical point argument shows that wpxq ą 0 for all
x P pa, bq. Now, integrating by parts gives

ż b

a

px´ aqpx´ cqpx´ bqf ra, b, c, xs dx “

ż b

a

w1pxqf ra, b, c, xs dx

“

”

wpxqf ra, b, c, xs
ıˇ

ˇ

ˇ

b

a
´

ż b

a

wpxq

ˆ

d

dx
f ra, b, c, xs

˙

dx

“ ´

ż b

a

wpxqf ra, b, c, x, xs dx,

where it can be shown using Lemma 2.2.2 that

d

dx
f rx0, x1, . . . , xn, xs “ lim

hÑ0

f rx0, x1, . . . , xn, x` hs ´ f rx0, x1, . . . , xn, xs

h

“ lim
hÑ0

f rx0, x1, . . . , xn, x` hs ´ f rx, x0, x1, . . . , xns

h
“ lim

hÑ0
f rx, x0, x1, . . . , xn, x` hs

“ f rx, x0, x1, . . . , xn, xs.

With gpxq “ wpxq ě 0 on ra, bs, it follows from the Mean Value Theorem for Integrals
that there exists an ξ P ra, bs such that

E2pfq “ ´

ż b

a

wpxqf ra, b, c, x, xs dx

“ ´f ra, b, c, ξ, ξs

ż b

a

wpxq dx

“ ´
f p4qpηq

24

ˆ

4

15
h5

˙

, for some η P ra, bs, h “
b´ a

2

Hence,

E2pfq “ ´

ˆ

f p4qpηq

90

˙

h5 for some η P ra, bs. (3.1.5)

Observe that Simpson’s rule is exact for polynomials of degree at most 3, even though quadratic
interpolation is exact for polynomial of degree at most 2. In essence, Simpson’s rule is much
more accurate than the trapezoidal rule.

3.1.4 Composite Simpson’s Rule

As before, the error analysis shows that Simpson’s rule is not so useful if h “ b ´ a is not
sufficiently small. Following a similar idea to that used to derive the composite trapezoidal
rule (Composite Trapezoidal), we subdivide the interval [a,b] onto n evenly spaced subintervals
and apply (Simpson) onto each of these two successive subintervals. More precisely, for any
even integer n ě 2, define

h “
b´ a

n
, xj “ a` jh for j “ 0, 1, . . . , n.
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Applying Simpson’s rule onto the subintervals rx2j, x2pj`1qs, j “ 0, 1, . . . ,
n´ 2

2
gives

Ipfq “

ż x2

x0

fpxq dx`

ż x4

x2

fpxq dx` . . .`

ż xn

xn´2

fpxq dx

“

n´2
2
ÿ

j“0

ż x2j`2

x2j

fpxq dx

“

n´2
2
ÿ

j“0

¨

˚

˚

˝

h

3

”

fpx2jq ` 4fpx2j`1q ` fpx2j`2q

ı

looooooooooooooooooooomooooooooooooooooooooon

simple trapezoidal rule

´
h5

90
f p4qpηjq

loooomoooon

error

˛

‹

‹

‚

.

This yields the Composite Simpson’s Rule

Inpfq “ Snpfq “

n´2
2
ÿ

j“0

h

3

”

fpx2jq ` 4fpx2j`1q ` 2fpx2j`2q

ı

“
h

3

”

f0 ` 4f1 ` 2f2 ` 4f3 ` 2f4 ` . . .` 2fn´2 ` 4fn´1 ` fn

ı

(Composite Simpson)

Error Analysis

Similar to the composite trapezoidal rule, one can show that

Enpfq “ Ipfq ´ Inpfq “ ´

n´2
2
ÿ

j“0

h5

90
f p4qpηjq for some ηj P rx2j, x2j`2s

“ ´
h5

90

´n

2

¯

ˆ

2

n

˙

n´2
2
ÿ

j“0

f p4qpηjq

“ ´
h5n

180
f p4qpηq. for some η P ra, bs

Substituting n “ pb´ aq{h gives

Enpfq “ ´

„

pb´ aqf p4qpηq

180



h4 for some η P ra, bs. (3.1.7)

Observe that the composite Simpson’s rule is exact for polynomials of degree at most 3.
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3.2 Note on Newton-Cotes Formulas

Given pn ` 1q interpolation nodes, consider the interpolating polynomial pnpxq in Lagrange’s
form

pnpxq “
n
ÿ

i“0

lipxqfpxiq, where lipxq “
n
ź

j‰i

x´ xj
xi ´ xj

.

Approximating the integrand fpxq using pnpxq yields

Ipfq “

ż b

a

fpxq dx «

ż b

a

pnpxq dx “

ż b

a

˜

n
ÿ

i“0

lipxqfpxiq

¸

dx “
n
ÿ

i“0

Aifpxiq, (3.2.1)

where Ai’s are called weights, having the form

Ai “

ż b

a

lipxq dx.

For equally spaced nodes, (3.2.1) is called the Newton-Cotes formula or the Newton-
Cotes quadrature rules. The simple trapezoidal rule (Simple Trapezoidal) pn “ 1q and
Simpson’s rule (Simpson) pn “ 2q are two examples of the Newton-Cotes formula.

To estimate the error, we employ a similar argument as in Section 2.3. More precisely, if
|f pn`1qpxq| ďM on ra, bs, one has

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

fpxq dx´
n
ÿ

i“0

Aifpxiq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż b

a

”

fpxq ´ ppxq
ı

dx

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż b

a

f pn`1qpξxq

pn` 1q!

˜

n
ź

i“0

px´ xiq

¸

dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď
M

pn` 1q!

˜

ż b

a

n
ź

i“0

|x´ xi| dx

¸

“
M

pn` 1q!
φnpxq.

3.2.1 Chebyshev Polynomials of Second Kind

Following Section 2.4, we can minimise the error bound for Newton-Cotes formula by choosing
the interpolation nodes to be roots of Chebyshev polynomials of the second kind. Let
U0pxq “ 1, U1pxq “ 2x and

Un`1pxq “ 2xUnpxq ´ Un´1pxq, n ě 1. (3.2.2)

Observe that Un is a polynomial of degree n for each n ě 0 and Unpxq “ 2nxn ` . . .. For
example,

U2pxq “ 4x2
´ 1

U3pxq “ 8x3
´ 4x

U4pxq “ 16x4
´ 12x2

` 1.
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Lemma 3.2.1. For any x P r´1, 1s, the Chebyshev polynomials of the second kind admits the
closed form expression

Unpxq “
sinppn` 1q cos´1pxqq

sinpcos´1 xq
, n ě 0. (3.2.3)

It follows that Unpcospxqq “
sinppn` 1qxq

sinpxq
, n ě 0.

Proof. The case n “ 0, 1 is trivial. For n ě 2, we need to show that (3.2.3) coincides with the
recursive relation (3.2.2). �

It is clear from Lemma 3.2.1 that Unpxq has zeros at

xj “ cos

ˆ

jπ

n` 1

˙

, 1 ď j ď n. (3.2.4)

One can show a similar result to Theorem 2.4.4, namely φnpxq is minimised if the interpolation
nodes txju

n
j“0 are chosen to be zeros of the Chebyshev polynomial of the second kind Un`1

given by

xj “ cos

ˆ

pj ` 1qπ

n` 2

˙

, 0 ď j ď n. (3.2.5)

This leads to

minφnpxq “

ż b

a

˜

n
ź

i“0

|x´ xi|

¸

dx “
1

2n
.

3.2.2 Midpoint Rule

There are Newton-Cotes formulas in which one of both of the endpoints of integration are
removed from the interpolation nodes. We approximate the integrand f using the constant

function f

ˆ

a` b

2

˙

and this leads to the Simple Midpoint Rule

I1pfq “

ż b

a

f

ˆ

a` b

2

˙

dx “ pb´ aqf

ˆ

a` b

2

˙

. (Simple Midpoint)

Error Analysis

Assume f P C2ra, bs. Denote c “
a` b

2
. It follows from Taylor’s theorem that:

E0pfq “

ż b

a

fpxq ´ fpcq dx “

ż b

a

„

f 1pcqpx´ cq `
f2pξxq

2
px´ cq2



dx,

for some ξx P ra, bs. The first integral vanishes since the function x´ c is symmetric about the
point c which is the midpoint of the interval ra, bs. For the second integral, since px´ cq2 ě 0
for all x P ra, bs, it follows from the Mean Value Theorem for Integrals that there exists
an η P ra, bs such that:

E0pfq “

ż b

a

px´ cq2
ˆ

f2pξxq

2

˙

dx “

ˆ

f2pηq

2

˙
ż b

a

px´ cq2 dx
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“

ˆ

f2pηq

2

˙
ż 2h

0

py ´ hq2 dx

“

ˆ

f2pηq

2

˙ˆ

2h3

3

˙

, where h “ pc´ aq.

Consequently, the error is given by:

E0pfq “
pb´ aq3

24
f2pηq for some η P ra, bs. (3.2.6)

3.2.3 Composite Midpoint Rule

We subdivide the interval into n evenly spaced subintervals and apply the (Simple Midpoint)
onto each of these subintervals. More precisely, for any given n ě 1, define

h “
b´ a

n
, xj “ a` jh, j “ 0, 1, . . . , n, cj “

xj´1 ` xj
2

, j “ 1, . . . , n.

where cj’s are the midpoints of the subintervals rxj´1, xjs. Then

Ipfq “

ż b

a

fpxq dx “
n
ÿ

j“1

ż xj

xj´1

fpxq dx

“

n
ÿ

j“1

ˆ

hfpcjq `
h3

24
f2pηjq

˙

where ηj P rxj´1, xjs, j “ 1, . . . , n. The first sum is defined as the Composite Midpoint
Rule, given by

Inpfq “ hrfpc1q ` fpc2q ` . . .` fpcnqs, n ě 1, where cj :“
xj´1 ` xj

2
.

(Composite Midpoint)

A similar argument for the error analysis of composite trapezoidal rule shows that

Enpfq “
h2pb´ aq

24
f2pηq for some η P ra, bs. (3.2.7)

Observe that the composite midpoint rule is exact for polynomials of degree at most 1.

Remark 3.2.2. Newton-Cotes formula has limited application due to failure of convergence
for some functions, where the problem arises from the assumption that the interpolation nodes
are uniformly spaced.

3.3 Gaussian Quadrature

The composite trapezoidal and Simpson’s rule are based on using a lower-order polynomial
approximation of the integrand on subintervals of decreasing size. Instead of approximating
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the integrand, we approximate the integral directly. Consider

Inpfq “
n
ÿ

j“1

ωjfpxjq «

ż b

a

wpxqfpxq dx “ Ipfq, (3.3.1)

where wpxq is the weight function that is nonnegative, integrable on ra, bs, and satisfying the
following two properties:

1.

ż b

a

|x|nwpxq dx is integrable and finite for all n ě 0,

2. If

ż b

a

wpxqgpxq dx “ 0 for some nonnegative, continuous function gpxq, then gpxq ” 0 on

pa, bq.

txju
n
j“1 and twju

n
j“1 are called the Gauss nodes and Gauss weight respectively. Note that

the Gauss weight wj should not be viewed as an approximation of the weight function wpxq.

To gain some intuition behind the construction of Gaussian quadrature, let us choose ωpxq ”
1 and consider the integral over the interval r´1, 1s. More precisely, we consider the particular
case

Ipfq “

ż 1

´1

fpxq dx «
n
ÿ

j“1

wjfpxjq “ Inpfq. (3.3.2)

Define the error function

Enpfq :“ Ipfq ´ Inpfq “

ż 1

´1

fpxq dx´
n
ÿ

j“1

wjfpxjq. (3.3.3)

The aim is to choose the Gauss nodes and weights such that Enppq “ 0 for all polynomials
ppxq of as large degree as possible. Suppose ppxq has the form

ppxq “
m
ÿ

k“0

akx
k
“ a0 ` a1x` . . .` am´1x

m´1
` amx

m. (3.3.4)

Expanding Enppq gives:

0 “ Enppq “

ż 1

´1

˜

m
ÿ

k“0

akx
k

¸

dx´
n
ÿ

j“1

wj

˜

m
ÿ

k“0

akx
k
j

¸

“

m
ÿ

k“0

ak

ˆ
ż 1

´1

xk dx

˙

´

m
ÿ

k“0

ak

˜

n
ÿ

j“1

wjx
k
j

¸

“

m
ÿ

k“0

akEnpx
k
q.

Since this must holds for any choice of a0, a1, . . . , am, Enppq “ 0 for every polynomials of degree
ď m if and only if

Enp1q “ Enpxq “ . . . “ Enpx
m
q “ 0, (3.3.5)

and nodes and weights are found by solving (3.3.5). We present below how to find nodes and
weights for the case n “ 1, 2, and from there, deduce the equations for nodes and weights for
a general n ě 1.
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1. Suppose n “ 1.
ż 1

´1

fpxq dx « w1fpx1q.

Since we have two unknowns w1, x1, we require that E1p1q “ E1pxq “ 0. This gives

ż 1

´1

1 dx “ w1 ùñ ω1 “ 2

ż 1

´1

x dx “ w1x1 “ 2x1 ùñ x1 “ 0.

The Gaussian quadrature in this case corresponds to the simple midpoint rule (Simple Midpoint),
i.e.

ż 1

´1

fpxq dx « 2fp0q,

This is exact for polynomials of degree at most 1.

2. Suppose n “ 2. Then

ż 1

´1

fpxq dx « w1fpx1q ` w2fpx2q.

Since we have four unknowns w1, w2, x1, x2, we require that E2p1q “ E2pxq “ E2px
2q “

E2px
3q “ 0. This yields

Enpx
j
q “

ż 1

´1

xj dx´ pw1x
j
1 ` w2x

j
2q “ 0, j “ 0, 1, 2, 3,

which gives four nonlinear equations

w1 ` w2 “ 2 (3.3.6a)

w1x1 ` w2x2 “ 0 (3.3.6b)

w1x
2
1 ` w2x

2
2 “

2

3
(3.3.6c)

w1x
3
1 ` w2x

3
2 “ 0. (3.3.6d)

Taking advantage of the symmetry structure of (3.3.6), we look for solutions of the form

w1 “ w2, x1 “ ´x2.

It follows from (3.3.6a) that w1 “ w2 “ 1, and (3.3.6c) gives

2x2
1 “

2

3
ùñ x1 “ ˘

?
3

3
.

The Gaussian quadrature in this case has the form

ż 1

´1

fpxq dx « f

ˆ

´

?
3

3

˙

` f

ˆ

?
3

3

˙

,

and this is exact for polynomials of degree at most 3. This is better compared to Simpson’s
rule which uses three interpolation nodes.
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3. For a general n ě 1, there are 2n unknowns and we require 2n equations given by

Enpx
k
q “

ż 1

´1

xk dx´
n
ÿ

j“1

wjx
k
j “ 0, k “ 0, 1, . . . , 2n´ 1.

Exploiting the integral structure of monomials, the following 2n nonlinear equations are
obtained

n
ÿ

j“1

wjx
k
j “

$

&

%

0 if k “ 1, 3, . . . , 2n´ 1,

2

k ` 1
if k “ 0, 2, . . . , 2n´ 2.

(3.3.7)

Theorem 3.3.1. For each n ě 1, there is a unique quadrature formula Inpfq “
n
ÿ

j“1

wjfpxjq of

degree of precision p2n´ 1q. Assuming f P C2nra, bs, we have

ż b

a

wpxqfpxq dx “
n
ÿ

j“1

wjfpxjq ` Enpfq, (3.3.8)

where
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Enpfq “

„

f p2nqpξq

p2nq!


ż b

a

q2
pxqwpxq dx

loooooooomoooooooon

only depends on n

for some ξ P pa, bq,

qpxq “

n
ź

j“1

px´ xjq.

(3.3.9)

The Gauss nodes txju
n
j“1 are zeros of φnpxq, where tφnpxqu are orthogonal polynomials on ra, bs

with respect to the weighted inner product p¨, ¨qw, i.e.

pφj, φkqw :“

ż b

a

wpxqφjpxqφkpxq dx “ 0 for any j ‰ k.

Remark 3.3.2.

1. Examples of weight function with their respective orthogonal polynomials can be found
at the end of Section 2.5.

2. One can show that the Gauss weight has the form

wj “

ż b

a

wpxqrljpxqs
2 dx ą 0,

where ljpxq are the Lagrange basis polynomials, j “ 1, . . . , n [See (2.1.3)]. Thus, Gauss
weights are positive for all n ě 1. Note also that

n
ÿ

i“j

wj “

ż b

a

wpxq dx,

since the Gauss quadrature is exact for fpxq ” 1.
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3. For integrals on an arbitrary but finite interval ra, bs with weight function wpxq ” 1, one
can reduce the integral over ra, bs to the integral over r´1, 1s using the affine transforma-
tion

ż b

a

fptq dt “

ˆ

b´ a

2

˙
ż 1

´1

f

ˆ

a` b` xpb´ aq

2

˙

dx.

Theorem 3.3.3. If f P Cra, bs, then

n
ÿ

j“1

wjfpxjq ÝÑ

ż b

a

wpxqfpxq dx as n ÝÑ 8.

Proof. WLOG, we may choose the interval to be r´1, 1s; otherwise we can rescale the function
using an affine transformation. Given ε ą 0, it follows from the Weierstrass Approximation
Theorem that there exists a polynomial ppxq such that

|fpxq ´ ppxq| ă ε for all x P r´1, 1s.

Choose n ě 1 sufficiently large such that 2n exceeds the degree of p. Then

n
ÿ

j“1

wjppxjq “

ż 1

´1

wpxqppxq dx,

which leads to
ˇ

ˇ

ˇ

ˇ

ˇ

ż 1

´1

wpxqfpxq dx´
n
ÿ

j“1

wjfpxjq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż 1

´1

wpxqfpxq dx´

ż 1

´1

wpxqppxq dx

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

wjppxjq ´
n
ÿ

j“1

wjfpxjq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż 1

´1

wpxq|fpxq ´ ppxq| dx`
n
ÿ

j“1

wj|ppxjq ´ fpxjq|

ď

ˆ
ż 1

´1

wpxq dx

˙

ε`

˜

n
ÿ

j“1

wj

¸

ε

“ 2ε

ˆ
ż 1

´1

wpxq dx

˙

ÝÑ 0 as n ÝÑ 8,

since the weight function wpxq is assumed to be integrable. �

3.3.1 2/14/2017

fpθ, φq “
8
ÿ

l“0

fml P
m
l pcos θqe´imφ

d

2l ` 1

4π

pl ´mq!

pl `mq!

fpθ, φq “
8
ÿ

l“0

fml P
m
l pcos θqe´imφ

d

2l ` 1

4π

pl ´mq!

pl `mq!
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¨

˝

Cm
l

Sml

˛

‚“

ż 2π

0

ż π

0

fpθ, φqPm
l pcos θq

ˆ

cosmφ

sinmφ

˙

sin θ dθdφ

“

ż 1

´1

„
ż 2π

0

fpx, θq

ˆ

cosmφ

sinmφ

˙

dφ



Pm
l pxq dx

3.4 Adaptive Quadrature

The idea of adaptive quadrature is largely motivated by the following question: Can we
minimise the computational cost/function evaluation such that the approximation is within a
given tolerance?

1. An important feature of composite quadrature rules is that of evenly spaced nodes, where
the intervals are subdivided uniformly until a desired accuracy is achieved. However,
this does not take into account the behaviour of the integrand, one example being the
magnitude of functional variations.

2. When the integrand is badly behaved at some point α over the interval of integration,
one requires sufficiently many nodes to compensate this. Consequently, this forces the
need to perform unnecessary computation over parts of ra, bs in which the function is well
behaved.

It is thus useful to introduce a quadrature rule that adjust its placement of nodes to reflect the
local behaviour of the integrand.

We illustrate the idea behind adaptive quadrature with an adaptive Simpson’s rule.
Consider an interval of integration ra, bs and denote h “ pb ´ aq{2, it follows from (Simpson)
and (Composite Simpson) that

ż b

a

fpxq dx “ Sra,a`2hs ´
h5

90
f p4qpηq (3.4.1)

ż b

a

fpxq dx “ Sra,a`hs ` Sra`h,a`2hs ´ 2

ˆ

h

2

˙5
1

90
f p4qpη̃q

“ Sra,a`hs ` Sra`h,a`2hs ´
1

16

ˆ

h5

90
f p4qpη̃q

˙

(3.4.2)

Assuming f p4qpηq « f p4qpη̃q, subtracting (3.4.2) from (3.4.1) gives

0 “ Sra,a`2hs ´ Sra,a`hs ´ Sra`h,a`2hs ´
15

16

ˆ

h5

90
f p4qpηq

˙

loooooooomoooooooon

15E
p2q
ra,a`2hs

ùñ E
p2q
ra,a`2hs “

1

15
rSra,a`2hs ´ Sra,a`hs ´ Sra`h,a`2hss.
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Given a tolerance τ ą 0, if |E
p2q
ra,a`2hs| ă τ , we apply the composite Simpson’s rule to ap-

proximate the integral. Otherwise, the subinterval is subdivided evenly and the composite
Simpson’s rule is applied on both halves separately. The new approximation is now tested

against the tolerance
ĥτ

pb´ aq
, where ĥ is the length of the subinterval.

Let’s combine

3.5 Singular Integrals

We are interested with two problems in this section:

1. Integrals whose integrands contain a singularity in the interval of integration,

2. Integrals with an infinite interval of integration.

By examining the nature of the singular behaviour of the integrand, it is usually possible to
derive a more rapidly convergent approximations.

3.5.1 Change of Variables

The idea is to transform the interval of integration in such a way that the new integrand is
sufficiently smooth near the singularity. For a finite interval of integration ra, bs containing
singularities, consider for example the following integral

I “

ż b

0

fpxq
?
x
dx,

where f P Cnra, bs for some n ě 1. Let x “ u2, then dx “ 2udu and I becomes

I “ 2

ż

?
b

0

fpu2
q du.

The new integrands is now smooth and standard numerical quadrature can be applied to it.

For an infinite interval of integration, consider the following example

I “

ż 8

1

fpxq

xp
dx, p ą 1, with lim

xÑ8
fpxq exists .

Assume f is smooth on r1,8q. Performing a change of variable

x “
1

uα
ùñ dx “

´α

u1`α
du, α ą 0.

This transforms the interval r1,8q to the interval r0, 1s. This leads to

I “ α

ż 1

0

upαf

ˆ

1

uα

˙

du

u1`α



Numerical Integration 59

“ α

ż 1

0

upp´1qα´1f

ˆ

1

uα

˙

du.

The goal now is to maximising the smoothness of the new integrand at u “ 0, which can be
done by choosing α ą 0 sufficiently large.

Example 3.5.1. Consider the integral

I “

ż 8

1

fpxq

x
?
x
dx.

Performing a change of variable x “ 1{u4, one can show that

I “ 4

ż 1

0

uf

ˆ

1

u4

˙

du.

Assuming a behaviour of fpxq near x “ 8

fpxq “ c0 `
c1

x
`
c2

x2
` . . . ,

then

uf

ˆ

1

u4

˙

“ c0u` c1u
5
` c2u

9
` . . . ,

i.e. the new integrand is smooth at u “ 0.

3.5.2 Analytic Treatment of Singularity

This method is common in PDEs and Harmonic Analysis, where the idea is to isolate the
singularity. As an example, consider the following integral:

I “

ż b

0

fpxq lnpxq dx “

ż ε

0

fpxq lnpxq dx`

ż b

ε

fpxq lnpxq dx “ I1 ` I2.

Assuming fpxq is smooth on rε, bs, one can apply a standard numerical quadrature to approx-
imate I2. Near x “ 0, assume f has a convergent power series on r0, εs, i.e.

fpxq “
8
ÿ

j“0

ajx
j.

Substituting this into I1 and integrating by parts gives

I1 “

ż ε

0

fpxq lnpxq dx “

ż ε

0

˜

8
ÿ

j“0

ajx
j

¸

lnpxq dx

“

8
ÿ

j“0

aj

ˆ

εj`1

j ` 1

˙„

lnpεq ´
1

j ` 1



,

where we use the following important fact to remove one of the boundary term:

lim
tÑ0`

xβ lnpxq “ 0 for β ą 0.
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Example 3.5.2. Consider the integral

I “

ż 4π

0

cospxq lnpxq dx.

Choosing ε “ 0.1, we obtain

I1 “

ż 0.1

0

cospxq lnpxq dx, I2 “

ż 4π

0.1

cospxq lnpxq dx.

One can show that I1 is an alternating series, having the form

I1 “ εrlnpεq ´ 1s ´
ε3

6

ˆ

lnpεq ´
1

3

˙

`
ε5

600

ˆ

lnpεq ´
1

5

˙

.

Since I1 is a convergent power series, one can truncate I1 to obtain an approximation to any
desired accuracy. For this particular case, since the terms in I1 decays fast enough, the first
three terms are sufficient to give an accurate value of I1.
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3.6 Problems

1. Derive error estimate for the composite midpoint rule in the form

|EM
n | ď

pb´ aqh2

24
max
xPra,bs

|f2pxq|. (3.6.1)

The composite midpoint rule is given by

Mnpfq “ hrfpx1q ` fpx2q ` . . .` fpxnqs,

where h “ pb´ aq{n and

xj “ a`

ˆ

j ´
1

2

˙

h, j “ 1, . . . , n.

Solution: Assume f P C2ra, bs. Consider the case n “ 1, i.e. the simple midpoint
rule. For this particular case, h “ b´ a and

M1pfq “ pb´ aqf

ˆ

a` b

2

˙

“ pb´ aqf

ˆ

a`
h

2

˙

.

Let c “ a`
h

2
, Taylor expand fpxq around x “ c gives

EM
1 “

ż b

a

fpxq dx´ pb´ aqf

ˆ

a`
h

2

˙

“

ż b

a

rfpxq ´ fpcqs dx

“

ż b

a

„

f 1pcqpx´ cq `
f2pξq

2
px´ cq2



dx for some ξ P pa, bq.

Observe that

ż b

a

px´ cq dx “

ż c`h
2

c´h
2

px´ cq dx “ 0,

since the function x´ c is odd about the point x “ c. So the first definite integral is
zero and we are left with

|EM
1 | ď

1

2

ż b

a

px´ cq2|f2pξq| dx

ď
1

2

ˆ

max
xPra,bs

|f2pxq|

˙
ż b

a

px´ cq2 dx

Performing a change of variable y “ x´ a gives

ż b

a

px´ cq2 dx “

ż a`h

a

ˆ

x´ a´
h

2

˙2

dx “

ż h

0

ˆ

y ´
h

2

˙2

dy
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“
1

3

ˆ

y ´
h

2

˙3 ˇ
ˇ

ˇ

ˇ

h

0

“
1

3

«

ˆ

h

2

˙3

´

ˆ

´
h

2

˙3
ff

“
h3

12
.

Thus,

|EM
1 | ď

1

2

ˆ

max
xPra,bs

|f2pxq|

˙ˆ

h3

12

˙

“
pb´ aq3

24
max
xPra,bs

|f2pxq|. (3.6.2)

which matches with (3.6.1) since h “ pb´ aq in this case.

Denote the quadrature error for the simple midpoint rule over an interval ra, bs by
pEM

1 qra,bs. For a general n ě 1, h “ pb´ aq{n and

|EM
n | “

ˇ

ˇ

ˇ

ˇ

ż b

a

fpxq dx´Mnpfq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż b

a

fpxq dx´ hrfpx1q ` fpx2q ` . . .` fpxnqs

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż a`h

a

fpxq dx´ hfpx1q `

ż a`2h

a`h

fpxq dx´ hfpx2q

` . . .`

ż a`nh

a`pn´1qh

fpxq dx´ hfpxnq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

pEM
1 qra`pj´1qh,a`jhs

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

j“1

ˇ

ˇpEM
1 qra`pj´1qh,a`jhs

ˇ

ˇ

ď

n
ÿ

j“1

h3

24

ˆ

max
xPra`pj´1qh,a`jhs

|f2pxq|

˙

”

from (3.6.2)
ı

ď
h3n

24
max
xPra,bs

|f2pxq|,

since ra` pj ´ 1qh, a` jhs Ă ra, bs for every j “ 1, . . . , n. Substituting n “ pb´ aq{h
thus yields the desired error estimate (3.6.1).
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2. (a) Derive the two-point Gaussian quadrature formula for

Ipfq “

ż 1

0

fpxq ln

ˆ

1

x

˙

dx,

in which the weight function is wpxq “ ln

ˆ

1

x

˙

.

Solution: Two-point Gaussian quadrature formula means we want to approxi-
mate Ipfq as

Ipfq « w1fpx1q ` w2fpx2q.

Define the error function E2pfq “ Ipfq´w1fpx1q´w2fpx2q. Since we have four
parameters w1, w2, x1, x2, we impose E2p1q “ E2pxq “ E2px

2q “ E2px
3q “ 0.

This yields

Enpx
j
q “

ż 1

0

xj ln

ˆ

1

x

˙

dx´ w1x
j
1 ´ w2x

j
2 “ 0 for every j “ 0, 1, 2, 3. (3.6.3)

For any n ě 0, consider the following integral

Gn “

ż 1

0

xn ln

ˆ

1

x

˙

dx “ lim
bÑ0`

ż 1

b

xn ln

ˆ

1

x

˙

dx.

Chain rule gives

d

dx

ˆ

ln

ˆ

1

x

˙˙

“

ˆ

1

1{x

˙

d

dx

ˆ

1

x

˙

“ x

ˆ

´
1

x2

˙

“ ´
1

x
.

Integrating by parts gives

ż 1

b

xn ln

ˆ

1

x

˙

dx “

„

xn`1

n` 1
ln

ˆ

1

x

˙
ˇ

ˇ

ˇ

ˇ

1

b

´

ż 1

b

ˆ

xn`1

n` 1

˙ˆ

´
1

x

˙

dx

“ ´

„

bn`1

n` 1
ln

ˆ

1

b

˙

`
1

n` 1

ż 1

b

xn dx

“ ´

„

bn`1

n` 1
ln

ˆ

1

b

˙

`

„

1´ bn`1

pn` 1q2



Using L’Hôpital rule,

lim
bÑ0`

bn`1 ln

ˆ

1

b

˙

“ lim
bÑ0`

ln

ˆ

1

b

˙

1

bn`1

“ lim
bÑ0`

ˆ

´
1

b

˙

ˆ

´
n` 1

bn`2

˙

“ lim
bÑ0`

ˆ

1

b

˙ˆ

bn`2

n` 1

˙

“ 0, since n ě 0.
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On the other hand,

lim
bÑ0`

1´ bn`1

pn` 1q2
“

1

pn` 1q2
.

Thus,

Gn “

ż 1

0

xn ln

ˆ

1

x

˙

dx “
1

pn` 1q2
, n ě 0. (3.6.4)

Now, using the identity (3.6.4) to expand (3.6.3) for each j “ 0, 1, 2, 3, we obtain
four nonlinear equations

w1 ` w2 “ 1 (3.6.5a)

w1x1 ` w2x2 “
1

4
(3.6.5b)

w1x
2
1 ` w2x

2
2 “

1

9
(3.6.5c)

w1x
3
1 ` w2x

3
2 “

1

16
(3.6.5d)

We decouple the system of nonlinear equations into two equations involving
w1, x1 and solve them using WolframAlpha. Let

w2 “ 1´ w1, x2 “
1

w2

ˆ

1

4
´ w1x1

˙

“
1

1´ w1

ˆ

1

4
´ w1x1

˙

. (3.6.6)

Substituting (3.6.6) into (3.6.5c) and (3.6.5d) yields

w1x
2
1 `

1

1´ w1

ˆ

1

4
´ w1x1

˙2

“
1

9

w1x
3
1 `

1

p1´ w1q
2

ˆ

1

4
´ w1x1

˙3

“
1

16
,

which has two pairs of solutions pw1, x1q given by

w1 “
1

2
¯

9

4
?

106
, x1 “

5

14
˘

?
106

42
.

Choosing the first set of solution w1 “
1

2
´

9

4
?

106
, x1 “

5

14
`

?
106

42
, we obtain

that

w2 “ 1´ w1 “
1

2
`

9

4
?

106
, x2 “

5

14
´

?
106

42
.

Hence,

Ipfq « 0.2815 ln

ˆ

1

0.6023

˙

` 0.7815 ln

ˆ

1

0.1120

˙
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(b) Show that there is no set of nodes x1, x2, . . . , xn and coefficients α1, α2, . . . , αn such
that the quadrature rule

n
ÿ

j“1

αjfpxjq,

exactly equals to the integral

ż b

a

fpxqwpxq dx for all polynomials of degree less than

or equal to 2n. Here, wpxq is the weight function.

Solution: Suppose, by contradiction, that there exists a set of nodes x1, x2, . . . , xn
and Gauss weight α1, α2, . . . , αn such that the Gauss quadrature is exact for all
polynomials of degree less than or equal to 2n, i.e.

ż b

a

P pxqwpxq dx “
n
ÿ

j“1

αjP pxjq for all P pxq with degpP q ď 2n. (3.6.7)

Recall that the weight function wpxq satisfies the property that if

ż b

a

gpxqwpxq dx “

0 for some nonegative, continuous function gpxq, then gpxq ” 0 on pa, bq.

Consider the following polynomial

ppxq “
n
ź

j“1

px´ xjq
2
“ px´ x1q

2
px´ x2q

2 . . . px´ xnq
2.

On one hand,
n
ÿ

j“1

αjppxjq “ 0, (3.6.8)

since tx0, x1, . . . , xnu are zeros of ppxq by construction. On the other hand,

ż b

a

ppxqwpxqdx ‰ 0, (3.6.9)

since p is a nonnegative, continuous function and p is not identically equal to
zero on pa, bq; this follows from the assumption we impose on the weight function
wpxq (See above). Comparing (3.6.8) and (3.6.9), we see that this contradicts
(3.6.7) since p is of degree 2n.

Remark: The fact that ppxq does not change sign is crucial here in order to use
the assumption about wpxq. Otherwise, we can lower the degree of ppxq and
conclude that the Gauss quadrature with n nodes and n weight cannot be exact
for all polynomials of degree less than 2n´ 1, contradicting Theorem 3.3.1.

3. Consider the following three methods

(a) the trapezoidal rule with n subdivisions;
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(b) Simpson’s rule with n subdivisions;

(c) the “corrected trapezoidal rule” with n subdivisions,

In “ h

ˆ

1

2
f0 ` f1 ` . . .` fn´1 `

1

2
fn

˙

´
h2

12
rf 1pbq ´ f 1paqs.

Using these methods to compute the following integrals:

I “

ż 1

0

e´x
2

dx, I “

ż 2π

0

dx

2` cospxq
.

Analyse empirically the rate of convergence of In to I by calculating

I2n ´ In
I4n ´ I2n

. (3.6.10)

Solution: We compute the derivative of the integrand since this is required in
the “corrected trapezoidal rule”.

d

dx
pe´x

2

q “ ´2xe´x
2

d

dx

ˆ

1

2` cospxq

˙

“
sinpxq

p2` cospxqq2
.

The remaining discussion concerning (3.6.10) is adopted from Atkinson’s book.
For simplicity, let us denote the ratio (3.6.10) by Jn. Suppose the numerical
quadrature has an asymptotic error formula of the form

I ´ In “
C

np
, for some constant C and p ą 0. (3.6.11)

Substituting this into Jn yields

Jn “
pI ´ Inq ´ pI ´ Inq

pI ´ I2nq ´ pI ´ I4nq
“

1

np
´

1

p2nqp

1

p2nqp
´

1

p4nqp

“

p4nqp

np
´
p4nqp

p2nqp

p4nqp

p2nqp
´
p4nqp

p4nqp

“
4p ´ 2p

2p ´ 1

“
2pp2p ´ 1q

2p ´ 1
“ 2p.

If the asymptotic error formula (3.6.11) is actually valid, then the rate of con-
vergence of the numerical quadrature In is directly proportional to Jn since p
increases as Jn increases, i.e. large magnitude of Jn corresponds to fast conver-
gence of In.

We present, in tables, the numerical results Jn and the number of steps required
to converge to the numerical solution for each quadrature rule. We measure the
difference between succesive numerical solutions and say that the quadrature
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rule converges if the difference is less than 10´16 in absolute value. Note that
for a given n, I4n has to be evaluated for trapezoidal and corrected trapezoidal
rule, while I8n has to evaluated for Simpson’s rule since Simpson’s rule can only
be applied for even number of subintervals.

n Trapezoidal Corrected trapezoidal n{2 Simpson

10 4.001249076550956 15.993888726363565 10 15.992355020559598

20 4.000312442895004 15.998500426033873 20 15.998120214869884

30 4.000138877400072 15.999262560132889 30 15.999315115814516

40 4.000078121145502 15.999468365365903 40 15.999117119340783

50 4.000049998387922 15.999611778748653 50 15.998586261240382

60 4.000034723577809 16.002523613814983 60 15.995723620987892

70 4.000025510370252 16.000756867459152 70 16.001157613535174

80 4.000019531834193 16.001139298192314 80 16.013529948312556

Table 3.1: Jn for the first integral, with integrand e´x
2
.

n Trapezoidal Corrected trapezoidal n{2 Simpson

10 5.2418663ˆ105 5.2418663ˆ105 10 5.2422671ˆ105

20 2.97295ˆ104 2.97295ˆ104 20 8

30 2 2 30 -2

40 1 1 40 0

50 -3 -3 50 -0.6

60 -0.2 -0.2 60 0.6666667

Table 3.2: Jn for the second integral, with integrand p2` cospxqq´1.

Trapezoidal Corrected trapezoidal Simpson

1st integral 23844 356 307

Numerical solution 0.7468241327 0.7468241328 0.7468241328

2nd integral 33 33 28

Numerical solution 3.6275987285 3.6275987285 3.6275987285

Table 3.3: Number of steps required for convergence and numerical solutions.
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We see that for the first integral, the asymptotic error of trapezoidal rule behaves
like Oph2q, while corrected trapezoidal and Simpson’s rule both behave like
Oph4q. For the second integral, all three quadrature rules converges rapidly,
with error behaving like Oplog2p5.24ˆ 105qq.

(d) Derive the “corrected trapezoidal rule” formula given in part (c).

Solution: Assume f P C2ra, bs and denote fj “ fpxjq, j “ 0, 1, . . . , n. The
Mean Value Theorem asserts that for every j “ 1, . . . , n, there exists an
ξj P pxj´1, xjq such that

f 1pxjq ´ f
1pxj´1q

xj ´ xj´1

“ f2pξjq ùñ hf2pξjq “ f 1pxjq ´ f
1
pxj´1q.

Hence,

Ipfq “
n
ÿ

j“1

ˆ

h

2
rfj´1 ` fjs

˙

looooooooooomooooooooooon

Composite trapezoidal rule

´

n
ÿ

j“1

h3

12
f2pηjq

loooooomoooooon

Sum of local errors

for some ηj P rxj´1, xjs

“

n
ÿ

j“1

ˆ

h

2
rfj´1 ` fjs

˙

´

n
ÿ

j“1

h3

12
rf2pηjq ´ f

2
pξjq ` f

2
pξjqs

“

n
ÿ

j“1

ˆ

h

2
rfj´1 ` fjs

˙

´

n
ÿ

j“1

h2

12
rhf2pξjqs ´

n
ÿ

j“1

h3

12
rf2pηjq ´ f

2
pξjqs

“

n
ÿ

j“1

ˆ

h

2
rfj´1 ` fjs

˙

´

n
ÿ

j“1

h2

12
rf 1pxjq ´ f

1
pxj´1qs

loooooooooooooomoooooooooooooon

Telescopic sum

´

n
ÿ

j“1

h3

12
rf2pηjq ´ f

2
pξjqs

“

n
ÿ

j“1

ˆ

h

2
rfj´1 ` fjs

˙

´
h2

12
rf 1pxnq ´ f

1
px0qs ´

n
ÿ

j“1

h3

12
rf2pηjq ´ f

2
pξjqs

“ h

ˆ

1

2
f0 ` f1 ` . . .` fn´1 `

1

2
fn

˙

´
h2

12
rf 1pbq ´ f 1paqs

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

Corrected trapezoidal rule

´

n
ÿ

j“1

h3

12
rf2pηjq ´ f

2
pξjqs

Truncating the second sum yields the “corrected trapezoidal rule”.
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Numerical Methods for ODEs

We are interested in numerically solving general initial value problems (IVP), having the
form

#

y1 “ fpx, yq,

ypx0q “ Y0.
(IVP)

The function fpx, yq is assumed to be continuous in some domain D of the xy-plane and
px0, Y0q P D.

Definition 4.0.1. We say that a function Y pxq is a solution on D of (IVP) if for all x P D,

1. px, Y pxqq P D,

2. Y px0q “ Y0,

3. Y 1pxq exists and Y 1pxq “ fpx, Y pxqq.

Example 4.0.2. Consider the first-order ODE of the form

y1 “ λy ` gpxq, yp0q “ Y0,

where g P Cr0,8q. Using the method of integrating factors, one can show that the solution
has the form

Y pxq “ Y0e
λx
`

ż x

0

eλpx´tqgptq dt, x P r0,8q.

4.1 Existence, Uniqueness and Stability Theory

One should always ensure that the problem is well-posed before even attempting to solve
(IVP) numerically, i.e. a unique solution exists and the solution is stable with respect to small
perturbation of initial data.

69
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Theorem 4.1.1 (Local Existence). Assume f P CpDq, px0, Y0q P D, and fpx, yq satisfies the
Lipschitz condition, i.e. there exists an K ě 0 such that

|fpx, y1q ´ fpx, y2q| ď K|y1 ´ y2| for all px, y1q, px, y2q P D.

Then for a suitably chosen interval I “ rx0 ´ α, x0 ` αs, there is a unique solution Y pxq on I
of (IVP).

Remark 4.1.2. If
Bfpx, yq

By
exists and is bounded on D, it follows from the mean value theorem

that fpx, yq satisfies the Lipschitz condition with Lipschitz constant

K “ max
px,yqPD

ˇ

ˇ

ˇ

ˇ

Bfpx, yq

By

ˇ

ˇ

ˇ

ˇ

.

Note that this is a stronger assumption since Lipschitz functions might not be differentiable
(although Lipschitz functions are differentiable almost everywhere by Rademacher’s theorem).

Example 4.1.3. Consider the initial value problem y1 “ 1` sinpxyq on

D “ tpx, yq P R2 : x P r0, 1s, y P Ru.

Computing the partial derivative of f with respect to y gives

Bfpx, yq

By
“ x cospxyq ùñ K “ max

px,yqPD

ˇ

ˇ

ˇ

ˇ

Bfpx, yq

By

ˇ

ˇ

ˇ

ˇ

“ 1.

Thus for any initial data px0, Y0q with x0 P p0, 1q, there exists a unique solution Y pxq on some
interval rx0 ´ α, x0 ` αs Ă r0, 1s.

We now turn to stability of (IVP), in which we want to see how the solution changes when
we perturbs the initial data or the function fpx, yq (with respect to x).

Theorem 4.1.4 (Stability). Consider the perturbed problem of the original problem (IVP)

#

y1 “ fpx, yq ` δpxq,

ypx0q “ Y0 ` ε.
(IVPε)

Assume that

1. fpx, yq satisfies the condition of Theorem 4.1.1,

2. δpxq is continuous for all x such that px, yq P D.

Then there exists a unique solution Y px; δ, εq of (IVPε) on an interval rx0´α, x0`αs for some
α ą 0, uniformly for all perturbations ε and δpxq satisfying

|ε| ď ε0, }δ}8 ď ε0,
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for some sufficiently small ε0 ą 0. Moreover, if Y pxq is the solution of the unperturbed problem
(IVP), then we have the following stability estimate:

max
|x´x0|ďα

|Y pxq ´ Y px; δ, εq| ď Cr|ε| ` α}δ}8s, (4.1.1)

where C “
1

1´ αK
, K the Lipschitz constant of fpx, yq.

Remark 4.1.5. We say that (IVP) is well-posed or stable in the sense of Theorem 4.1.4, i.e.
the solution Y pxq depends continuously on the data of the problem, namely the function f and
initial condition Y0. Note that it is possible for (IVP) to be stable but ill-conditioned with
respect to numerical computation, since the constant C can be really large!

For the sake of illustration, we consider only perturbations ε in the initial condition Y0. Let
Y px; εq be the solution to this particular perturbed problem. It satisfies

#

Y 1px; εq “ fpx, Y px; εqq on x P rx0 ´ α, x0 ` αs,

Y px0; εq “ Y0 ` ε.
(4.1.2)

Denote Zpx; εq “ Y px; εq ´ Y pxq, subtracting (IVP) from (4.1.2) gives
#

Z 1px; εq “ fpx, Y px; εqq ´ fpx, Y pxqq,

Zpx0; εq “ ε.
(4.1.3)

If Y px; εq is sufficiently close to Y pxq for small values of ε, then we can approximate the RHS
of (4.1.3) by its first order Taylor expansion of f with respect to the second variable, which
gives

fpx, Y px; εqq ´ fpx, Y pxqq «
Bfpx, Y pxqq

By
Zpx; εq.

Thus, (4.1.3) reduces to a separable ODE and it has an explicit solution of the form

Zpx; εq « ε exp

ˆ
ż x

x0

Bfpt, Y ptqq

By
dt

˙

.

Clearly, the behaviour of the perturbed problem depends on the sign and magnitude of
Bfpt, Y ptqq

By
.

For a problem to be well-conditioned, we require the integral
ż x

x0

Bfpt, Y ptqq

By
dt on |x´ x0| ď α,

to be bounded from above by zero or a small positive number, as x increases. Consequently,
the perturbation Zpx; εq will be bounded by some small constant times ε.

Example 4.1.6. The initial value problem
#

y1 “ 100y ´ 101e´x,

yp0q “ 1,
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has solution Y pxq “ e´x. The perturbed problem
#

y1 “ 100y ´ 101e´x,

yp0q “ 1` ε,

has solution Y px; εq “ e´x ` εe100x. It is clear that Y px; εq diverges rapidly from Y pxq as x
increases. Such problem is said to be ill-conditioned.

In the special case where

Bfpt, Y ptqq

By
ď 0 on |t´ x0| ď α,

the perturbation Zpx; εq probably remains bounded by ε as x increases; the unperturbed prob-
lem (IVP) is said to be well-conditioned. If, in addition, the partial derivative has large mag-
nitude, we see that Zpx; εq ÝÑ 0 rapidly as x increases. Unfortunately, numerical methods
might fail to capture the rapid decaying behaviour of Zpx; εq, it is as if we are solving
the unperturbed problem since Zpx; εq is almost negligible. Such problems are still said to be
well-conditioned, but it can be a challenging task for many numerical methods; they are known
as stiff DEs.

4.2 Euler’s Method

In practice, we construct simplified models to obtain qualitative approximations of real-world
models that are difficult to solve analytically, but in many cases even these simplified models
are difficult or impossible to solve either explicitly or implicitly. Thus, it is important in having
numerical methods to numerically approximate the true solution.

We begin with Euler’s method which is a first-order numerical scheme for solving (IVP),
and it often serves as the basis for constructing complex numerical methods. Consider solving
the initial value problem (IVP) on the finite interval ra, bs. For simplicity, suppose we have a
uniform spaced grid nodes

a “ x0 ă x1 ă x2 ă . . . ă xN “ b,

where the nodes are given by xn “ x0 ` jh, j “ 0, 1, . . .. Denote Nphq to be the largest index
N ą 0 such that

xN ď b and xN`1 ą b.

As before, Y pxnq is the true solution at xn and yhpxnq “ yn the approximate solution at xn.

4.2.1 Derivation

Euler’s method is defined as follows

yn`1 “ yn ` hfpxn, ynq, n “ 0, 1, 2, . . . , with y0 “ Y0. (Euler)

Below are four possible derivations of Euler’s method.
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1. Finite difference approximation. Using definition of a derivative,

Y 1pxq “ lim
hÑ0

Y px` hq ´ Y pxq

h
«
Y px` hq ´ Y pxq

h
.

Since Y 1pxnq “ fpxn, Y pxnqq, we have

Y pxn`1q ´ Y pxnq

h
« fpxn, Y pxnqq,

and rearranging gives Y pxn`1q « Y pxnq ` hfpxn, Y pxnqq.

2. Tangent line approximation. Geometrically, we approximate Y pxn`1q by extending
tangent line at xn. In point-slope form, we have

Y pxn`1q ´ Y pxnq

h
« Y 1pxnq “ fpxn, Y pxnqq.

Iterating this over each interval rx0, x1s, rx1, x2s, . . . gives (Euler)

3. Taylor series expansion. Expanding Y pxn`1q about xn gives

Y pxn`1q “ Y pxnq ` hY
1
pxnq `

h2

2
Y 2pξnq for some ξn P rxn, xn`1s.

(Euler) is obtained by dropping the error term Tn “
h2

2
Y 2pξnq which is also called the

local truncation error at xn`1.

4. Numerical integration. Integrating the ODE over rxn, xn`1s gives

ż xn`1

xn

Y 1ptq dt “

ż xn`1

xn

fpt, Y ptqq dt

ùñ Y pxn`1q “ Y pxnq `

ż xn`1

xn

fpt, Y ptqq dt.

Different choices of quadrature rules on the RHS yields different numerical method, and
(Euler) is obtained by approximating the integral using the left-hand rectangular rule,
i.e.

ż xn`1

xn

fpt, Y ptqq dt “ pxn`1 ´ xnqfpxn, Y pxnqq “ hfpxn, Y pxnqq.

Remark 4.2.1. One obtain the midpoint method if we use the simple midpoint rule
(Simple Midpoint).

yn`1 “ yn´1 ` 2hfpxn, ynq, n ě 1.

Example 4.2.2. Consider the initial value problem
#

y1pxq “ ´ypxq,

yp0q “ 1.
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Its unique solution is Y pxq “ e´x. Applying (Euler) to the IVP with the choice of step size
h “ 0.1, we get

y0 “ 1, y1 “ y0 ´ hy0 “ 0.9

y2 “ y1 ´ hy1 “ 0.81.

We can compute the error explicitly since we have an explicit solution.

Y px1q ´ y1 “ e´0.1
´ 0.9 « 0.004837

Y px2q ´ y2 “ e´0.2
´ 0.81 « 0.001873.

4.2.2 Convergence Analysis

Despite its simplicity, does Euler’s method in any meaningful sense provide approximations to
the true solution of (IVP)? Intuitively, the local truncation error in Euler’s method (error at
any given steps) is of order Oph2q, but since we need to take Op1{hq steps to reach some fi-
nite x, we expect the global error (error at a given time step) in Euler’s method is of order Ophq.

Remark 4.2.3. The local truncation error is defined to be the error at any given steps,
assuming there is no error in the previous step. The global (truncation) error is defined to
be the error at any given time step; it consists of error propagated from all the previous steps
along with error generated in the current step. We can think of global error as cumulative
error produced by approximate solutions.

Example 4.2.4. Consider the initial value problem
#

y1 “ 2x,

yp0q “ 0.

Its unique solution is Y pxq “ x2. The global error of Euler’s method can be analysed directly
here. Since y0 “ 0 and

yn`1 “ yn ` 2hxn, xn “ nh,

we have

y1 “ 0` 2hp0q “ 0

y2 “ 0` 2hpx1q “ x1x2

y3 “ x1x2 ` 2hpx2q “ x2x3

y4 “ x2x3 ` 2hpx3q “ x3x4.

We now show that yn “ xn´1xn, n ě 1 using method of induction. The base case n “ 1 is
trivial. Suppose yn “ xn´1xn holds, then

yn`1 “ xn´1xn ` 2hpxnq “ xnpxn´1 ` 2hq “ xnxn`1.

Thus,
Y pxnq ´ yn “ x2

n ´ xnxn´1 “ pxnqpxn ´ xn´1q “ hxn,
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and we see that the global error at each fixed value xn is proportional to h. This is not sur-
prising, since the global error is the sum of local truncation error and n is proportional to h itself.

The standard approach behind almost every convergence proof of a numerical scheme is
to write an equation for the error and then use a Gronwall-type argument to estimate the
magnitude of the solution. We state a relatively simple but extremely useful lemma in the
analysis of finite difference methods.

Lemma 4.2.5. For any x P R,

ex ě 1` x,

and for any x ě ´1,

0 ď p1` xqm ď emx.

Proof. The first inequality can be easily seen by applying Taylor’s theorem on ex. Indeed,

ex “ 1` x`
x2

2
eξ,

for some ξ in between 0 and x. �

Unless stated otherwise, we will now assume that the function fpx, yq satisfies the stronger
Lipschitz condition, i.e. the following holds for any y1, y2 P R, x P rx0, bs:

|fpx, y1q ´ fpx, y2q| ď K|y1 ´ y2|. (4.2.1)

This will simplify the remaining discussion. If the function f satisfies the Lipschitz condition,
f can be modified in such a way that the intrinsic property of (IVP) and its true solution Y pxq
remain unchanged, but f now satisfies the stronger Lipschitz condition.

Theorem 4.2.6. Assume that the true solution Y pxq of (IVP) has a bounded second derivative
on rx0, bs. Then the approximate solution tyhpxnq : xn P rx0, bsu obtained by Euler’s method
satisfies the following pointwise error estimate:

max
xnPrx0,bs

|Y pxnq ´ yhpxnq| ď epb´x0qK |e0| `

„

epb´x0qK ´ 1

K



τphq
looooooooooomooooooooooon

error generated by Euler’s method

, (4.2.2)

where

τphq “
h

2
}Y 2}8 and e0 “ Y0 ´ yhpx0q.

If in addition,

|e0| ď C1h as h ÝÑ 0,

for some constant C1 ě 0, then there exists a constant B ě 0 for which

max
xnPrx0,bs

|Y pxnq ´ yhpxnq| ď Bh. (4.2.3)
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Proof. Define en :“ Y pxnq ´ yhpxnq, n ě 0 and

τn “
h

2
Y 2pξnq, 0 ď n ď Nphq ´ 1,

Clearly,

max
0ďnďN´1

|τn| ď τphq :“
h

2
}Y 2}8.

Denote Yn ” Y pxnq. To derive the error equation, we first expand Yn`1 about point xn which
yields

Yn`1 “ Yn ` hfpxn, Ynq `
h2

2
Y 2pξnq “ Yn ` hfpxn, Ynq ` hτn. (4.2.4)

Subtracting the Euler’s method from (4.2.4), we have that

en`1 “ en ` hrfpxn, Ynq ´ fpxn, ynqs ` hτn.

Using the strong Lipschitz condition of fpx, yq, for every 0 ď n ď Nphq ´ 1 we have

|en`1| ď |en| ` h|fpxn, Yn ´ fpxn, ynq| ` h|τn|

ď |en| ` hK|Yn ´ yn| ` h|τn|

ď p1` hKq|en| ` hτphq.

Iterating this inequality gives,

|en| ď p1` hKqrp1` hKq|en´1| ` hτphqs ` hτphq

ď . . . . . .

ď p1` hKqn|e0| `

”

1` p1` hKq ` p1` hKq2 ` . . .` p1` hKqn´1
ı

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

geometric series

hτphq.

Summing the geometric series and using Lemma 4.2.5, we have

|en| ď p1` hKq
n
|e0| `

„

p1` hKqn ´ 1

hK



hτphq

ď enhK |e0| `

ˆ

enhK ´ 1

K

˙

τphq

“ epxn´x0qK |e0| `

ˆ

epxn´x0qK ´ 1

K

˙

τphq

ď epb´x0qK |e0| `

ˆ

epb´x0qK ´ 1

K

˙

τphq.

Taking the maximum over all xn P rx0, bs yields the error estimate (4.2.2). To obtain (4.2.3),
simply set

B “ C1e
pb´x0qK `

ˆ

epb´x0qK ´ 1

K

˙

}Y 2}8
2

.

�
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4.2.3 Stability Analysis

Following a similar idea from the stability analysis of (IVP), we consider the following perturbed
numerical scheme

#

zn`1 “ zn ` hrfpxn, znq ` δpxnqs

z0 “ y0 ` ε.
(4.2.5)

for 0 ď n ď Nphq ´ 1. We want to compare these numerical solutions tynu, tznu as h ÝÑ 0.
Let en :“ zn ´ yn, then e0 “ ε and

en`1 “ en ` hrfpxn, znq ´ fpxn, ynqs ` hδpxnq.

It follows from Theorem 4.2.6 that

max
0ďnďNphq

|zn ´ yn| ď epb´x0qK |ε| `

ˆ

epb´x0qK ´ 1

K

˙

}δ}8 (4.2.6)

ď K1|ε| `K2}δ}8,

where K1, K2 ą 0 are constants independent of the step size h. Observe that (4.2.6) is analo-
gous to the stability estimate (4.1.1) for the continuous IVP, and it says that Euler’s method
is a stable approximation scheme for the true solution of (IVP). Note that the imitation of
such stability estimate is something we want from all numerical methods.

4.3 Taylor’s Method

Euler’s method belongs to the more general class of single-step methods, where the numerical
scheme only requires knowledge of the numerical solution yn to determine yn`1. To improve
the order of convergence, we seek for approximations that are more accurate and one choice is
simply extending Euler’s method by considering higher-order Taylor expansions. We present
the mechanism behind Taylor’s method with the following example.

Example 4.3.1. Consider the initial value problem

#

y1pxq “ ´ypxq ` 2 cospxq,

yp0q “ 1.

Its unique solution is given by Y pxq “ sinpxq ` cospxq P C8. Consider the second-order Taylor
expansion of Y pxn`1q around xn:

Y pxn`1q “ Y pxnq ` hY
1
pxnq `

h2

2
Y 2pxnq `

h3

3!
Y p3qpξnq, ξn P rxn, xn`1s. (4.3.1)

Computing Y 1pxnq and Y 2pxnq gives

Y 1pxnq “ ´Y pxnq ` 2 cospxnq

Y 2pxnq “ ´Y
1
pxnq ´ 2 sinpxnq “ Y pxnq ´ 2 cospxnq ´ 2 sinpxnq.
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Setting Y pxnq “ yn, substituting these expressions into (4.3.1) and dropping the truncation
error, we obtain

yn`1 “ yn ` hr´yn ` 2 cospxnqs `
h2

2
ryn ´ 2 cospxnq ´ 2 sinpxnqs.

Since the local truncation error is of order h3, we expect this numerical method to be more
accurate than Euler’s method.

To solve (IVP) on the interval rx0, bs using Taylor’s method, we choose an order p ě 1
where p is such that the true solution Y pxq P Cpp`1qrx0, bs and approximate Y pxn`1q with its
pth-order Taylor expansion around xn:

Y pxn`1q « Y pxnq ` hY
1
pxnq ` . . .`

hp

p!
Y ppqpxnq, (Taylor)

with the local truncation error

Tn “
hp`1

pp` 1q!
Y pp`1q

pξnq, for some ξn P rxn, xn`1s.

The remaining task is to find higher order derivatives of Y and express them in terms of higher
order derivatives of fpxn, Y pxnqq.

Remark 4.3.2. If the solution Y pxq and fpx, Y pxqq are sufficiently differentiable, then we can
show that Taylor’s method satisfies the error estimate

max
x0ďxnďb

|Y pxnq ´ yhpxnq| ď Chp max
x0ďxďb

|Y pp`1q
pxq| (4.3.2)

Taylor’s method can be viewed as a simple and accurate numerical method, but it requires
computing derivatives of fpx, yq which can be very difficult and time-consuming, not to men-
tion the regularity assumption of Y pxq and fpx, yq.

4.4 Runge-Kutta Method

Using symbolic manipulation on a computer, the Taylor’s method can be easily produced.
Nonetheless, the derivatives are still likely to be quite time-consuming to evaluate. We would
like to develop higher order numerical methods that avoid the need to compute higher order
derivatives, while mantaining the accuracy of Taylor’s method. This is precisely the main idea
behind the Runge-Kutta (RK) methods, where it evaluates fpx, yq at more points to “recover”
the desired accuracy. All RK methods can be written in the general form:

yn`1 “ yn ` hF pxn, yn;hq, n ě 0, y0 “ Y0. (4.4.1)

Intuitively, F pxn, yn;hq is interpreted as some kind of “average slope” on the interval rxn, xn`1s.
As pointed out above, F pxn, yn;hq is constructed so that (4.4.1) behaves like a higher order



Numerical Methods for ODEs 79

Taylor’s method.

To gain some insights on how to derive higher order RK methods, we first illustrate the
derivation of a family of RK methods of order 2 (RK2). We suppose F has the general form

F px, y;hq “ γ1fpx, yq ` γ2fpx` αh, y ` βhfpx, yqq, (4.4.2)

where γ1, γ2, α, β are chosen such that when we substitute Y pxq into (4.4.1), the local truncation
error

Tnphq :“ Y pxn`1q ´ rY pxnq ` hF pxn, Y pxnq;hqs “ Oph3
q. (4.4.3)

To achieve (4.4.3), we consider the third-order Taylor expansion of Y pxn`1q around xn and
the second-order Taylor expansion of fpxn ` αh, yn ` βfpxn, ynqq around pxn, ynq. Denote
Y pxnq “ Yn. Computing these expansion yields

Yn`1 “ Yn ` hY
1
n `

h2

2
Y 2n `

h3

6
Y p3qn `Oph4

q. (4.4.4)

fpxn ` αh, yn ` βfpxn, ynqq

“ f ` rαhfx ` βhffys `
1

2

“

pαhq2fxx ` pαhqpβhfqfxy ` pβhfqpαhqfyx ` pβhfq
2fyy

‰

`Oph3
q

“ f ` hrαfx ` βffys ` h
2

ˆ

1

2
α2fxx ` αβffxy `

1

2
β2f 2fyy

˙

`Oph3
q. (4.4.5)

Using Y 1n “ fpxn, Ynq, we have

Y 2n “ fx ` fyY
1
n “ fx ` fyf (4.4.6)

Y p3qn “ fxx ` fxyY
1
n ` pfyq

1f ` fyf
1

“ fxx ` fxyf ` rfyx ` fyyY
1
nsf ` fyrfx ` fyY

1
ns

“ fxx ` fxyf ` rfyx ` fyyf sf ` fyrfx ` fyf s

“ fxx ` 2fxyf ` fyyf
2
` fyfx ` f

2
y f. (4.4.7)

Substituting (4.4.4), (4.4.5), (4.4.6), (4.4.7) into (4.4.3) and collecting common powers of h
gives:

Tnphq “ hY 1n `
h2

2
Y 2n `

h3

6
Y 3n `Oph4

q ´ h
”

γ1fpxn, Ynq ` γ2fpxn ` αh, Yn ` βhfpxn, Ynqq
ı

“ h
”

1´ γ1 ´ γ2

ı

f ` h2

„ˆ

1

2
´ γ2α

˙

fx `

ˆ

1

2
´ γ2β

˙

fyf



` h3

„ˆ

1

6
´

1

2
γ2α

2

˙

fxx `

ˆ

1

3
´ γ2αβqfxyf

˙

`

ˆ

1

6
´

1

2
γ2β

2

˙

fyyf
2
`

1

6
fyfx `

1

6
f 2
y f



`Oph4
q,

where f and all its partial derivatives are evaluated at pxn, Ynq. The coefficient of h3 cannot
be zero in general, if f is allowed to vary arbitrarily. Setting the coefficients of h and h2 to be
zero gives

γ1 ` γ2 “ 1, γ2α “
1

2
, γ2β “

1

2
. (4.4.8)
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The nonlinear system (4.4.8) is underdetermined, and its general solution is given by

γ1 “ 1´ γ2, α “ β “
1

2γ2

. (4.4.9)

where γ2 is a free parameter and γ2 ‰ 0, since otherwise we would recover Euler’s method. We

require α P r0, 1s so that xn ` αh P rxn, xn`1s. Three typical choices are γ2 “
1

2
,
3

4
, 1. With

γ2 “
1

2
,

F pxn, yn;hq “
1

2

”

fpxn, ynq ` fpxn ` h, yn ` hfpxn, ynqq
ı

,

and we obtain one of the possible RK2 method:

yn`1 “ yn `
h

2

”

fpxn, ynq ` fpxn`1, yn ` hfpxn, ynqq
ı

. (RK2)

(RK2) is sometimes called a two-stage method.

Higher-order RK methods can be generated in a similar fashion, but the algebra becomes
very tedious. Let p ě 1 be the number of evaluations of fpx, yq. We assume F has the general
formula

F pxn, yn;hq “
p
ÿ

j“1

γjvj, where v1 “ fpxn, ynq

vj “ f

˜

xn ` αjh, yn ` h
j´1
ÿ

i“1

βjivi

¸

, j “ 2, . . . , p.

A popular classical method is the fourth order RK method

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

v1 “ fpxn, ynq

v2 “ f

ˆ

xn `
h

2
, yn `

h

2
v1

˙

v3 “ f

ˆ

xn `
h

2
, yn `

h

2
v2

˙

v4 “ fpxn ` h, yn ` hv3q

yn`1 “ yn `
h

6
pv1 ` 2v2 ` 2v3 ` v4q.

(RK4)

It can be shown that the local truncation error for (RK4) is of order Oph5q. If y1 “ fpxq, then
(RK4) simplifies to

yn`1 “ yn `
h

6

„

fpxnq ` 4f

ˆ

xn `
h

2

˙

` fpxn ` hq



,

i.e. (RK4) reduces to (Simpson) rule for the integral on rxn, xn`1s.
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Remark 4.4.1. If the true solution Y pxq of (IVP) and fpx, Y pxqq are sufficiently differentiable,
then the RK method has local truncation error of order Ophp`1q and

max
x0ďxnďb

|Y pxnq ´ yhpxnq| ď Chp.

There is a relationship between p and the maximum possible order for the local truncation
error Tnphq:

Number of function evaluations (stages) 1 2 3 4 5 6 7 8

Maximum order of method 1 2 3 4 4 5 6 6

4.5 Multistep Methods

All the numerical methods we encountered so far are single-step methods. RK methods only
requires yn to compute yn`1, it does however invoke a series of intermediate values during the
computation. Multistep methods use the previous p step values to approximate the solution
at the next step and in the case of linear multistep methods, a linear combination of the
previous points and derivative values is used.

For the sake of convenience, denote fpxn, ynq “ y1pxnq “ y1n. Consider solving (IVP) on the
interval rx0, bs and assume that the problem is well-posed. The general form of linear multistep
methods is:

yn`1 “

p
ÿ

j“0

ajyn´j ` h
p
ÿ

j“´1

bjfpxn´j, yn´jq, xp`1 ď xn`1 ď b, n ě p ě 0, (LMM)

where the coefficients a0, . . . , ap and b´1, b0, . . . , bp are constants. This is the pp ` 1q-step
method if ap ‰ 0 or bp ‰ 0 and y1, . . . , yp must be obtained separately, usually using lower-
order methods. If b´1 “ 0, we have an explicit method, such as the forward Euler method ; if
b´1 ‰ 0, we have an implicit method, such the backward Euler method.

Denote Y pxnq “ Yn. Integrating Y 1 “ fpx, Y q over the interval rxn, xn`1s gives
ż xn`1

xn

Y 1pxq dx “

ż xn`1

xn

fpx, Y pxqq dx

ùñ Yn`1 ´ Yn “

ż xn`1

xn

fpx, Y pxqq dx.

Adams methods arise when we approximate the integral by replacing the integrand gpxq :“
fpx, Y pxqq with interpolating polynomials.

4.5.1 Adams-Bashforth (AB) Methods

Fix an integer q ě 0 corresponding to the degree of interpolating polynomial, and consider the
set of interpolation nodes txn´q, xn´q`1, . . . , xn´1, xnu. From Theorem 2.1.4, it follows that for
some ξn P rxn´q, xn`1s we have

gpxq “ pqpxq `
px´ xn´qqpx´ xn´q`1q . . . px´ xnq

pq ` 1q!
f pq`1q

pξnq
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“ pqpxq `
Y pq`2qpξnq

pq ` 1q!

˜

q
ź

j“0

px´ xn´q`jq

¸

loooooooooooooooooomoooooooooooooooooon

local truncation error

,

provided Y P Cpq`2qrxn´q, xn`1s. Recall that gpxnq “ fpxn, Y pxnqq “ Y 1pxnq “ Y 1n.

1. Suppose q “ 0. The interpolating node is xn and we have that

p0pxq “ gpxnq.

Computing the integral gives

ż xn`1

xn

gpxq dx «

ż xn`1

xn

gpxnq dx “ hgpxnq “ hY 1n,

with local truncation error

Tnphq “ Y 2pξnq

ż xn`1

xn

px´ xnq dx “
h2

2
Y 2pξnq.

Dropping Tnphq, we obtain the 1-step AB method of order 1 which is just the for-
ward/explicit Euler method:

yn`1 “ yn ` hy
1
n, n ě 0. (AB1)

It turns out that forward Euler method is stable if the step size h is sufficiently small.

2. Suppose q “ 1. The interpolating nodes are txn´1, xnu and we have that

p1pxq “
px´ xnq

pxn´1 ´ xnq
gpxn´1q `

px´ xn´1q

pxn ´ xn´1q
gpxnq

“
1

h

”

pxn ´ xqgpxn´1q ` px´ xn´1qgpxnq
ı

.

Computing the integral gives

ż xn`1

xn

gpxq dx «
gpxn´1q

h

ż xn`1

xn

pxn ´ xq dx`
gpxnq

h

ż xn`1

xn

px´ xn´1q dx

“

ˆ

gpxn´1q

h

˙ˆ

´
h2

2

˙

`

ˆ

gpxnq

h

˙ˆ

4h2 ´ h2

2

˙

“
3h

2
gpxnq ´

h

2
gpxn´1q

“
3h

2
Y 1n ´

h

2
Y 1n´1,

with the local truncation error

Tnphq “
Y p3qpξnq

2

ż xn`1

xn

px´ xn´1qpx´ xnq dx “
5

12
h3Y p3qpξnq.
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Dropping Tnphq, we obtain the 2-step AB method:

yn`1 “ yn `
h

2

”

3y1n ´ y
1
n´1

ı

, n ě 1. (AB2)

Observe that (AB2) requires two initial values y0, y1 to begin with. It can be shown that
the global error of (AB2) is Oph2q, assuming that y1 is chosen appropriately.

3. Suppose q “ 2. The interpolating nodes are txn´2, xn´1, xnu and we have that

p2pxq “

„

px´ xn´1qpx´ xnq

pxn´2 ´ xn´1qpxn´2 ´ xnq



gpxn´2q `

„

px´ xn´2qpx´ xnq

pxn´1 ´ xn´2qpxn´1 ´ xnq



gpxn´1q

`

„

px´ xn´2qpx´ xn´1q

pxn ´ xn´2qpxn ´ xn´1q



gpxnq

“
1

2h2

”

px´ xn´1qpx´ xnqgpxn´2q ` 2px´ xn´2qpx´ xnqgpxn´1q

` px´ xn´2qpx´ xn´1qgpxnq
ı

The local truncation error is

Tnphq “
Y p4qpξnq

6

ż xn`1

xn

px´ xn´2qpx´ xn´1qpx´ xnq dx “
3

8
h4Y p4qpξnq.

Dropping Tnphq, we obtain the 3-step AB method:

yn`1 “ yn `
h

12

”

23y1n ´ 16y1n´1 ` 5y1n´2

ı

, n ě 2. (AB3)

Observe that (AB3) requires three initial values y0, y1, y2 to begin with. It can be shown
that the global error of (AB3) is Oph3q, assuming that y1, y2 are chosen appropriately.

The pq ` 1q-step AB methods are based on interpolation of degree q. It can be shown that
the local truncation error satisfies

Tn “ Chq`2Y pq`2q
pξnq for some ξn P rxn´q, xn`1s,

and y1, y2, . . . , yq must be approximated using another method. If these approximations satisfy

Y pxkq ´ yhpxkq “ Ophq`1
q, k “ 1, . . . , q,

then the pq ` 1q-step AB method is also of order Ophq`1q.

Remark 4.5.1. In the case of (AB2), since we require |Y pxnq ´ yhpxnq| “ Oph2q, this must
be true for n “ 1 as well. There are many choices of achieving this:

1. The simplest choice is to use Euler’s method, in which y1 is given by

y1 “ y0 ` hfpx0, y0q “ Y0 ` hfpx0, Y0q ùñ Y1 ´ y1 “
h2

2
Y 2pξ1q,

for some ξ1 P rx0, x1s. Globally, Euler’s method is of order Ophq, but for a single step, it
is of order Oph2q.

2. If we use the RK method of order 2 (RK2), then for a single step, |Y px1q´yhpx1q| “ Oph3q,
which is more than required.
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4.5.2 Adams-Moulton (AM) Methods

The idea is similar to Adams-Bashforth methods, except that we consider the set of interpola-
tion nodes txn´q`1, xn´q`2, . . . , xn, xn`1u instead. From Theorem 2.1.4, it follows that for some
ξn P rxn´q`1, xn`1s we have

gpxq “ pqpxq `
px´ xn´q`1qpx´ xn´q`2q . . . px´ xn`1q

pq ` 1q!
f pq`1q

pξnq

“ pqpxq `
Y pq`2qpξnq

pq ` 1q!

˜

q
ź

j“0

px´ xn´q`pj`1qq

¸

looooooooooooooooooooomooooooooooooooooooooon

local truncation error

,

assuming Y P Cpq`2qrxn´q`1, xn`1s.

1. Suppose q “ 0. The interpolating node is xn`1 and we have that

p0pxq “ gpxn`1q.

Computing the integral gives

ż xn`1

xn

gpxq dx «

ż xn`1

xn

gpxn`1q dx “ hgpxn`1q “ hY 1n`1,

with local truncation error

Tnphq “ Y 2pξnq

ż xn`1

xn

px´ xn`1q dx “ ´
h2

2
Y 2pξnq.

Dropping Tnphq, we obtain the 1-step AM method of order 1 which is just the back-
ward/implicit Euler method:

yn`1 “ yn ` hy
1
n`1, n ě 0. (AM1)

As we shall see later, the implicit Euler method is unconditional stable, i.e. the stability
does not depend on the step size h.

2. Suppose q “ 1. The interpolating nodes are txn, xn`1u and we have that

p1pxq “
px´ xn`1q

pxn ´ xn`1q
gpxnq `

px´ xnq

pxn`1 ´ xnq
gpxn`1q

“
1

h

”

pxn`1 ´ xqgpxnq ` px´ xnqgpxn`1q

ı

.

Computing the integral gives

ż xn`1

xn

gpxq dx «
gpxnq

h

ż xn`1

xn

pxn`1 ´ xq dx`
gpxn`1q

h

ż xn`1

xn

px´ xnq dx

“

ˆ

gpxnq

h

˙ˆ

h2

2

˙

`

ˆ

gpxn`1q

h

˙ˆ

h2

2

˙
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“
h

2
gpxnq `

h

2
gpxn`1q

“
h

2
Y 1n `

h

2
Y 1n`1,

with the local truncation error

Tnphq “
Y 3pξnq

2

ż xn`1

xn

px´ xnqpx´ xn`1q dx “ ´
h3

12
Y p3qpξnq.

Dropping Tnphq, we obtain the 1-step AM method of order 2 which is the (Simple Trapezoidal)
rule for approximating integral:

yn`1 “ yn `
h

2

”

y1n ` y
1
n`1

ı

, n ě 0. (AM2)

This is often the choice for solving diffusion problem or parabolic PDEs, where one
discretizes in space and solve in time. However, this is not the method of choice for wave
problems since it lacks some notion of stability.

3. Suppose q “ 2. The interpolating nodes are txn´1, xn, xn`2u and we have that

p2pxq “

„

px´ xnqpx´ xn`1q

pxn´1 ´ xnqpxn´1 ´ xn`1q



gpxn´1q `

„

px´ xn´1qpx´ xn`1q

pxn ´ xn´1qpxn ´ xn`1q



gpxnq

`

„

px´ xn´1qpx´ xnq

pxn`1 ´ xn´1qpxn`1 ´ xnq



gpxn`1q

“
1

2h2

”

px´ xnqpx´ xn`1qgpxn´1q ` 2px´ xn´1qpx´ xn`1qgpxnq

` px´ xn´1qpx´ xnqgpxn`1q

ı

The local truncation error is

Tnphq “
Y p4qpξnq

6

ż xn`1

xn

px´ xn´1qpx´ xnqpx´ xn`1q dx “ ´
h4

24
Y p4qpξnq.

Dropping Tnphq, we obtain the 2-step AM method:

yn`1 “ yn `
h

12

”

5y1n`1 ` 8y1n ´ y
1
n´1

ı

, n ě 1. (AM3)

If fpx, yq is linear with respect to y, then the Adams-Moulton methods reduce to explicit
numerical methods. However, finding yn`1 requires solving a nonlinear equation in general. In
the case of (AM2), we have

yn`1 ´
h

2
fpxn`1, yn`1q “ yn `

h

2
fpxn, ynq. (4.5.1)

One way is to view this as a root-finding problem and solve it using Newton’s method, but
this is practical only for a small system. For large system, we employ a fixed-point iteration
method. Choosing y

p0q
n`1 appropriately, we solve the following iteration equation

y
pj`1q
n`1 “ yn `

h

2
rfpxn, ynq ` fpxn`1, y

pjq
n`1qs, j “ 0, 1, . . . . (4.5.2)
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To determine conditions under which (4.5.2) converges, subtract (4.5.2) from (4.5.1) to obtain

yn`1 ´ y
pj`1q
n`1 “

h

2
rfpxn`1, yn`1q ´ fpxn`1, y

pjq
n`1qs

“
h

2

Bfpxn`1, ξn`1q

By
pyn`1 ´ y

pjq
n`1q,

for some ξn`1 in between yn`1 and y
pjq
n`1, where we apply the mean value theorem on the last

line. Consequently, we see that y
pjq
n`1 ÝÑ yn`1 if

ˇ

ˇ

ˇ

ˇ

h

2

Bfpxn`1, ξn`1q

By

ˇ

ˇ

ˇ

ˇ

ă 1.

Remark 4.5.2. In practice, the stepsize h and initial guess y
p0q
n`1 are chosen to ensure that

only one iterate need be computed, and then we can take yn`1 « y
p1q
n`1. The initial guess y

p0q
n`1

can be computed using (AB1) or (AB2). For instance, using (AB1) gives:

y
p0q
n`1 “ yn ` hy

1
n.

This has a local truncation error of order Oph2q and it matches with the global error for (AM2) .

q Global error Adams-Bashforth formula Truncation error

0 Ophq yn`1 “ yn ` hy
1
n

h2

2
Y 2pξnq 1-step

1 Oph2q yn`1 “ yn `
h

2

´

3y1n ´ y
1
n´1

¯ 5

12
h3Y p3qpξnq 2-step

2 Oph3q yn`1 “ yn `
h

12

´

23y1n ´ 16y1n´1 ` 5y1n´2

¯ 3

8
h4Y p4qpξnq 3-step

Table 4.1: Adams-Bashforth methods (explicit).

q Global error Adams-Moulton formula Truncation error

0 Ophq yn`1 “ yn ` hy
1
n`1 ´

h2

2
Y 2pξnq 1-step

1 Oph2q yn`1 “ yn `
h

2

´

y1n ` y
1
n`1

¯

´
h3

12
Y p3qpξnq 1-step

2 Oph3q yn`1 “ yn `
h

12

´

5y1n`1 ` 8y1n ´ y
1
n´1

¯

´
h4

24
h4Y p4qpξnq 2-step

Table 4.2: Adams-Moulton methods (implicit).

4.6 Consistency and Convergence of Multistep Methods

Definition 4.6.1.



Numerical Methods for ODEs 87

1. For any differentiable function Y pxq, the local truncation error for integrating Y 1pxq
is given by

TnpY q “ Y pxn`1q ´

˜

p
ÿ

j“0

ajY pxn´jq ` h
p
ÿ

j“´1

bjfpxn´j, yn´jq

¸

, n ě p ě 0. (4.6.1)

2. Define the function τnpY q “ TnpY q{h. We say that (LMM) is consistent if

τphq “ max
xpďxnďb

|τhpY q| ÝÑ 0 as h ÝÑ 0. (4.6.2)

for all Y pxq P C1rx0, bs. Formally, a numerical method is consistent if its discrete oper-
ator converges to the continuous operator of the ODE as h ÝÑ 0, i.e. the true solution
almost satisfies the discrete equation.

The speed of convergence of the approximate solution tynu to the exact solution Y pxq is
related to the speed of convergence in (4.6.2). The following theorem provides conditions under
which τphq “ Ophmq for some m ě 1, which does not involve Taylor expansion.

Theorem 4.6.2. Let m ě 1 be a given integer. The consistency condition (4.6.2) holds for
any Y pxq P C1rx0, bs if and only if

p
ÿ

j“0

aj “ 1 and ´

p
ÿ

j“0

jaj `
p
ÿ

j“´1

bj “ 1. (4.6.3)

Moreover, we have that τphq “ Ophmq for any Y pxq P Cpm`1qrx0, bs if and only if (4.6.3) holds
and

p
ÿ

j“0

p´jqkaj ` k
p
ÿ

j“´1

p´jqk´1bj “ 1 for any k “ 2, . . . ,m. (4.6.4)

The largest value of m ě 1 such that (4.6.4) holds is called the order of convergence of
(LMM).

Proof. Assuming Y pxq P Cpm`1qrx0, bs, expanding Y pxq about the point xn yields:

Y pxq “
m
ÿ

k“0

Y pkqpxnq

k!
px´ xnq

k
`
Y pm`1qpξq

pm` 1q!
px´ xnq

m`1

looooooooooooomooooooooooooon

Rm`1pxq

,

for some ξ P rx0, bs. Using the linearity of the local truncation error Tn (as a function of Y ),
we obtain:

TnpY q “
m
ÿ

k“0

Y pkqpxnq

k!
Tn

´

px´ xnq
k
¯

` TnpRm`1q.

For k “ 0,

Tn

´

px´ xnq
0
¯

“ Tnp1q “ 1´
p
ÿ

j“0

aj “ c0.
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For k ě 1,

Tn

´

px´ xnq
k
¯

“ pxn`1 ´ xnq
k
´

˜

p
ÿ

j“0

ajpxn´j ´ xnq
k
` h

p
ÿ

j“´1

bjkpxn´j ´ xnq
k´1

¸

“ hk ´

˜

p
ÿ

j“0

ajp´jhq
k
` k

p
ÿ

j“´1

bjhp´jhq
k´1

¸

“

˜

1´

«

p
ÿ

j“0

p´jqkaj ` k
p
ÿ

j“´1

p´jqk´1bj

ff¸

hk

“ ckh
k.

A similar argument shows that:

TnpRm`1q “
Y pm`1qpξq

pm` 1q!
Tn

´

px´ xnq
m`1

¯

“
Y pm`1qpξq

pm` 1q!
cm`1h

m`1.

It follows that

TnpY q “
m
ÿ

k“0

Y pkqpxnq

k!
ckh

k
`
Y pm`1qpξq

pm` 1q!
cm`1h

m`1.

For (LMM) to be consistent, we require τphq “ Ophq and this requires TnpY q “ Oph2q. With
m “ 1, we must have c0 “ c1 “ 0 and this gives (4.6.3). To obtain τphq “ Ophmq, we require
TnpY q “ Ophm`1q and this is true if and only if

c0 “ c1 “ . . . “ cm “ 0.

This gives the condition (4.6.4).
�

Formally, a numerical method converges to the true solution if decreasing the step size h
leads to decreased error, in such a way that the error go to zero in the limit as h goes to zero.
The following theorem gives sufficient conditions for (LMM) to be convergent.

Theorem 4.6.3. Consider solving the (IVP) on rx0, bs using the linear multistep method
(LMM). Assume that

1. the initial error satisfy

ηphq “ max
0ďiďp

|Y pxiq ´ yhpxiq| ÝÑ 0 as h ÝÑ 0.

2. (LMM) is consistent.

3. The coefficients aj, j “ 0, 1, . . . , p in (LMM) are all nonnegative.

Then (LMM) is convergent and

max
x0ďxnďb

|Y pxnq ´ yhpxnq| ď C1ηphq ` C2τphq, (4.6.5)

for some constants C1, C2 independent of h. Moreover, if ηphq “ Ophmq and τphq “ Ophmq,
then (LMM) is convergent with order m.
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Remark 4.6.4. The same convergence result can be obtained if we weaken assumption (3) in
the Theorem 4.6.3. Observe that to obtain (LMM) with a rate of convergence of Ophmq, it
is necessary that the local truncation error TnpY q is of order Ophm`1q, but the initial values
y0, y1, . . . , yp need to be computed only with an accuracy of Ophmq, since ηphq “ Ophmq is
sufficient in the error estimate (4.6.5).

Example 4.6.5. Consider (AB2), the 2-step Adams-Bashforth method of order 2:

yn`1 “ yn `
h

2
p3y1n ´ y

1
n´1q.

In this case, p “ 1 and

a0 “ 1, a1 “ 0, b´1 “ 0, b0 “
3

2
, b1 “ ´

1

2
.

We verify using Theorem 4.6.2 that (AB2) is consistent and τphq “ Oph2q:

1
ÿ

j“0

aj “ a0 ` a1 “ 1

´

1
ÿ

j“0

jaj `
1
ÿ

j“´1

bj “ 0`

ˆ

0`
3

2
´

1

2

˙

“ 1

1
ÿ

j“0

p´jq2aj ` 2
1
ÿ

j“´1

p´jq1bj “ 0` 2

ˆ

0` 0´

ˆ

´
1

2

˙˙

“ 1.

It follows from Theorem 4.6.3 that (AB2) is convergent with order 2, provided ηphq “ Oph2q.

4.7 Stability of Multistep Methods

Before we define what it means for the linear multistep method (LMM) to be stable, we analyse
one example of (LMM) in which it is an unstable method.

Example 4.7.1. Consider the following 2-step explicit method

yn`1 “ 3yn ´ 2yn´1 `
h

2
rfpxn, ynq ´ 3fpxn´1, yn´1qs, n ě 1. (4.7.1)

If the true solution Y pxq P C3rx0, bs, it can be shown using Taylor expansion that

Y pxn`1q “ 3Y pxnq ´ 2Y pxn´1q `
h

2
rY 1pxnq ´ 3Y 1pxn´1qs `

7

12
h3Y 3pξnq.

This means that Tn “ Oph3q and τphq “ Oph2q. Comparing with (LMM), we see that

a0 “ 3, a1 “ ´2, b´1 “ 0, b0 “
1

2
, b1 “ ´

3

2
.



90 4.7. Stability of Multistep Methods

We first verify that it is a consistent numerical method and τphq “ Oph2q.

1
ÿ

j“0

aj “ a0 ` a1 “ 1

´

1
ÿ

j“0

jaj `
1
ÿ

j“´1

bj “ ´p0´ 2q `

ˆ

0`
1

2
´

3

2

˙

“ 1

1
ÿ

j“0

p´jq2aj ` 2
1
ÿ

j“´1

p´jq1bj “ ´2` 2

ˆ

0` 0´

ˆ

´
3

2

˙˙

“ 1.

Now, consider the following initial value problem

#

y1pxq “ 0

yp0q “ 1.

Its unique solution is Y pxq ” 1. Applying the 2-step explicit method (4.7.1) to IVP, we have

yn`1 “ 3yn ´ 2yn´1, n ě 1, y0 “ 1.

If we choose y1 “ 1, then yn “ 1 for all n ě 0. Suppose we perturb the initial values to

yε,0 “ 1` ε, yε,1 “ 1` 2ε,

then
yε,2 “ 3p1` 2εq ´ 2p1` εq “ 1` 4ε “ 1` 22ε.

We claim that yε,n “ 1` 2nε for each n ě 0. Using method of strong induction,

yε,n`1 “ 3yε,n ´ 2yε,n´1 “ 3p1` 2nεq ´ 2p1` 2n´1εq “ 1` 2n`1ε.

For example, take xn “ 1, n “ 1{h, xn “ nh, the perturbation on the original approximate
solutions satisfies

yε,n ´ yn “ ε2n “ ε21{h
ÝÑ 8 as h ÝÑ 0,

i.e. the numerical method is not convergent.

Definition 4.7.2.

1. Let tyn : 0 ď n ď Nphqu be the solution of (LMM) for some differential equation
y1 “ fpx, yq for all sufficiently small h ď h0. For every h ď h0, perturb initial val-
ues y0, . . . , yp ÞÑ z0, . . . , zp with

max
0ďnďp

|yn ´ zn| ď ε, 0 ă h ď h0.

The family of solution tynu is stable if there exists a constant C, independent of h ď h0

and valid for all sufficiently small ε ą 0 such that

max
0ďnďNphq

|yn ´ zn| ď Cε, 0 ă h ď h0.
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2. Consider all the (IVP) with fpx, yq continuous and satisfy the strong Lipschitz condition
(4.2.1). Assume that tynu produced from (LMM) are all stable. We say that (LMM) is
a stable numerical method (This is a global property of a numerical scheme, true for
any IVPs of admissible class).

3. Consider (IVP) with fpx, yq continuous and satisfy the strong Lipschitz condition (4.2.1).
Assume that all initial values y0, . . . , yp satisfy

ηphq :“ max
0ďnďp

|Y pxnq ´ yhpxnq| ÝÑ 0 as h ÝÑ 0.

Then the numerical solution tynu is said to converge to the true solution Y pxq of (IVP)
if

max
x0ďxnďb

|Y pxnq ´ yhpxnq| ÝÑ 0 as h ÝÑ 0.

If (LMM) is convergent for all initial value problems, then it is called a convergent
numerical method.

Remark 4.7.3. It can be shown that convergence of (LMM) implies consistency of (LMM).
As an example, consider the following initial value problem:

#

y1pxq “ 0

yp0q “ 1.

Since (LMM) is assumed to be convergent, we must have yp`1 ÝÑ Y pxp`1q ” 1. Choosing the

initial values y0, . . . , yp “ 1, it follows that 1 “
p
ÿ

j“0

aj.

It turns out that the convergence and stability of (LMM) are linked to the roots of the
polynomial

ρprq “ rp`1
´

p
ÿ

j“0

ajr
p´j. (4.7.2)

This can be obtained by considering (LMM) in the limit as h ÝÑ 0 and setting yp as rp.
Observe that ρp1q “ 0 from the consistency condition, so r “ 1 is called the principal leading
root.

Definition 4.7.4. Let r0, . . . , rp be the roots of (4.7.2), repeated according to their multiplicity
and set r0 “ 1. We say that the linear multistep method (LMM) satisfies the root condition
if

1. Each roots lies in the (closed) unit disk in C, i.e. |rj| ď 1 for every j “ 0, 1, . . . , p;

2. Roots on the boundary of unit disk are simple, i.e. |rj| “ 1 ùñ ρ1prjq ‰ 0.

Theorem 4.7.5. Assume (LMM) satisfies the consistency condition (4.6.3).

(a) (LMM) is stable if and only if the root condition is satisfied.
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(b) (LMM) is convergent if and only if the root condition is satisfied.

Corollary 4.7.6. Let (LMM) be a consistent linear multistep method. Then it is convergent
if and only if it is stable.

Example 4.7.7. Recall the 2-step explicit method

yn`1 “ 3yn ´ 2yn´1 `
h

2
rfpxn, ynq ´ 3fpxn´1, yn´1qs, n ě 1.

We already shown that this numerical scheme is consistent. With p` 1 “ 2, we have

ρprq “ r2
´ 3r ` 2 “ pr ´ 2qpr ´ 1q.

Since one of the roots is r “ 2 which lies outside the unit disk, it violates the root condition
and thus it is unstable.

In Theorem 4.7.5, the step size h has to be sufficiently small, but exactly how small should h
be? Clearly, h cannot be extremely small, otherwise (LMM) is impractical for most problems.
We investigate the stability of (LMM) by considering only the following model problem:

#

y1pxq “ λypxq

yp0q “ 1.

An intuitive reason is as follows: Expanding fpx, yq about the point px0, Y0q yields the approx-
imation:

Y 1pxq « fpx0, Y0q ` fxpx0, Y0qpx´ x0q ` fY px0, Y0qpY ´ Y0q,

which is valid if x « x0. Define V pxq “ Y pxq ´ Y0, the approximation above becomes:

V 1pxq « λV pxq ` gpxq,

where λ “ fypx0, Y0q and gpxq “ fpx0, Y0q ` fxpx0, Y0qpx ´ x0q. Note that the inhomogeneous
term gpxq will drop out from the error equation because we are concerned with differences of
solutions when investigating numerical stability.

As a motivating example, consider the stability of Euler’s method. Applying it to the model
equation with yp0q “ Y0 gives:

yn`1 “ yn ` hλyn, n ě 0, y0 “ Y0. (4.7.3)

Consider the perturbed problem where we only perturb the initial condition. Applying Euler’s
method to the perturbed problem gives:

zn`1 “ zn ` hλzn, n ě 0, z0 “ Y0 ` ε. (4.7.4)

We are interested in the case where Repλq ă 0, so that for any sufficiently small ε ą 0 we have:

Zpxq ´ Y pxq “ εeλx ÝÑ 0 as x ÝÑ 8.
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For such λ, we want to find values of h such that the numerical solutions of (4.7.3) and (4.7.4)
will retain the behaviour associated with Y pxq and Zpxq. Define en :“ zn ´ yn, taking the
difference yields:

en`1 “ en ` hλen “ p1` hλqen ùñ en “ p1` hλq
ne0 “ p1` hλq

nε, n ě 0.

Consequently, en ÝÑ 0 as xn ÝÑ 8 if and only if |1` hλ| ă 1, i.e. hλ P B1p´1q Ă C.

Remark 4.7.8. From the convergence point of view, we can view the original differential
equation as perturbation of the numerical method. In the case of Euler’s method,

Y pxn`1q “ Y pxnq ` hλY pxnq `
h

2
Y 2pξnq,

which is a perturbation of (4.7.3) at every step x0, x1, . . .. Nonetheless, the preceeding argument
can be modified to show that the dependence of the error Y pxnq´yn on the bound |1`hλ| ă 1.

Definition 4.7.9. For all λ satisfying Repλq ă 0, the set of all complex hλ such that the
numerical solution tynu of (LMM), when applied to the model equation y1 “ λy, tend to 0
as xn ÝÑ 8 for all choices of initial values ty0, y1, . . . , ypu, is called the region of absolute
stability of (LMM).

Applying (LMM) to the model equation, we obtain the following linear pp ` 1q order ho-
mogeneous difference equation:

yn`1 “

p
ÿ

j“0

ajyn´j ` hλ
p
ÿ

j“´1

bjyn´j, n ě p ě 0. (4.7.5)

The method for solving (4.7.5) is analogous to that of linear homogeneous ODE, but instead
of exponential solutions we look for polynomial solutions of (4.7.5). Setting yk “ rk in (4.7.5)
yields:

0 “ rn`1
´

p
ÿ

j“0

ajr
n´j

´ hλ
p
ÿ

j“´1

bjr
n´j.

Dividing by rn´p, we obtain the characteristic polynomial:

0 “ pprq “ rp`1
´

p
ÿ

j“0

ajr
p´j
´ hλ

p
ÿ

j“´1

bjr
p´j

“ ρprq ´ hλσprq,

where

σprq “ b´1r
p`1

`

p
ÿ

j“0

bjr
p´j. (4.7.6)

Denote the roots of pprq “ ρprq ´ hλσprq as r0phλq, r1phλq, . . . , rpphλq, counting multiplicity.
Observe that as h ÝÑ 0, pprq “ 0 reduces to ρprq “ 0 and

rjphλq “ rjp0q for j “ 0, 1, . . . , p.
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Because r “ 1 is a root of ρprq from the consistency condition (4.6.3), we let r0phλq to be
the root of pprq such that r0p0q “ 1, and we call this the principal root of the characteristic
equation.

We now construct the general solution to (4.7.5). Suppose the characteristic equation has
distinct roots, then the general solution of (4.7.5) is given by:

yn “
p
ÿ

j“0

γjrrjphλqs
n, n ě 0, (4.7.7)

where γj are constants determined by initial conditions. In the case of repeated roots, say
rjphλq with multiplicity ν ą 1, it can be shown that

!

rrjphλqs
n, nrrjphλqs

n, . . . , nν´1
rrjphλqs

n
)

(4.7.8)

form a linearly independent set of solutions of (4.7.5). Consequently, a necessary and sufficient
condition for yn ÝÑ 0 as xn ÝÑ 8 for all choices of y0, y1, . . . , yp is that

|rjphλq| ă 1 for all j “ 0, 1, . . . , p. (4.7.9)

Definition 4.7.10. The set of all complex hλ for Repλq ă 0 that satisfies condition (4.7.9) is
also called the region of absolute stability. Note that this region is contained in the set defined
in the preceeding definition, and they usually coincide. The second definition is more flexible,
in the sense that the characteristic equation is easier to write down and root-finding algorithm
can be used if necessary to find the characteristic roots. It is difficult in general to express yn
in terms of initial values even for 2-step methods!

Example 4.7.11. Consider the Backward Euler method

yn`1 “ yn ` hfpxn`1, yn`1q, n ě 0,

which is a 1-step implicit method. With a0 “ 1, b´1 “ 1, b0 “ 0, the characteristic polynomial
has the form:

pprq “ ρprq ´ hλσprq “ r ´ 1´ hλr,

which has a simple root r “
1

1´ hλ
assuming 1´hλ ‰ 0. The region of absolute stability with

respect to the second definition is the set of all complex hλ with Repλq ă 0, and we say that
the Backward Euler method is an A-stable method.

On the other hand, applying the Backward Euler method to the model equation and solving
for yn`1 yields:

yn`1 “ yn ` hλyn`1 ùñ yn`1 “

ˆ

1

1´ hλ

˙

yn

ùñ yn “

ˆ

1

1´ hλ

˙n

y0 “ rr0phλqs
ny0, n ě 0.

We must have |r0phλq| ă 1 in order to have yn ÝÑ 0 as xn ÝÑ 8 and recover the same region
of absolute stability.
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Relative Stability and Weak Stability

Consider again the model problem:

#

y1pxq “ λypxq,

yp0q “ 1.

Assuming distinct roots of the characteristic equation, the general solution using (LMM) is
given by

yn “
p
ÿ

j“0

γjrrjphλqs
n, n ě 0.

It can be shown that

γ0rr0phλqs
n
ÝÑ Y pxq “ eλx on r0, bs as h ÝÑ 0.

The remaining terms γjrrjphλqs
n, j “ 1, 2, . . . , p are called parasitic solutions and they can

be shown to converge to 0 as h ÝÑ 0. However, for fixed h with increasing xn, we would like
to keep the parasitic solutions relatively small compared to the principal part γ0rr0phλqs

n.

Definition 4.7.12.

1. We say that (LMM) is relatively stable if

|rjphλq| ď r0phλq, j “ 1, 2, . . . , p,

for all sufficiently small nonzero values of |hλ|.

2. (LMM) is said to satisfy the strong root condition if

|rjp0q| ă 1, j “ 1, 2, . . . , p.

3. If (LMM) is stable but not relatively stable, then it is called weakly stable.

Remark 4.7.13. Using continuity of the characteristic roots rjphλq with respect to hλ, it
can be shown that the strong root condition implies relative stability. The converse does not
necessarily hold, although they are equivalent for most practical methods.

Example 4.7.14. The characteristic polynomial for the Adams-Bashforth and Adams-Moulton
methods in the case h “ 0 coincides and has the form

pprq “ rp`1
´ rp,

which has roots r0p0q “ 1, rjp0q “ 0, j “ 1, 2, . . . , p. Thus the strong root condition is satisfied
and the Adams methods are relatively stable.
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Example 4.7.15. Integrating Y 1 “ fpx, Y q over the interval rxn´1, xn`1s yields:

Y pxn`1q “ Y pxn´1q `

ż xn`1

xn´1

fpt, Y ptqq dt.

Applying the (Simple Midpoint) rule onto the integral gives the midpoint method:

yn`1 “ yn´1 ` 2hfpxn, ynq, n ě 1, (Midpoint)

with local truncation error

TnpY q “
h3

3
f2pξnq “

h3

8
Y p3qpξnq for some ξn P rxn´1, xn`1s.

It is an explicit 2-step method and the order of convergence is 2. Now, applying to the model
problem, the method reduces to

yn`1 “ yn´1 ` 2hλyn, n ě 1,

and the characteristic polynomial pp “ 1q is

pprq “ r2
´ 1´ 2hλr.

This has roots

r “
2hλ˘

?
4h2λ2 ` 4

2
“ hλ˘

?
1` h2λ2.

We see that r0phλq “ r`, r1phλq “ r´ and they satisfy:

r0phλq “ 1` hλ`Oph2
q

r1phλq “ ´1` hλ`Oph2
q.

Consequently, the midpoint method is weakly stable when λ ă 0. We justify this in the case
of real λ. When λ ą 0, we have

r0 ą |r1| ą 0 for all h ą 0,

and the principal part γ0r
n
0 will dominate the parasitic solution γ1r

n
1 . When λ ă 0, we have

that for all h ą 0:
0 ă r0 ă 1, r1 ă ´1.

This means that the parasitic solution will eventually dominate the principal part as n increases,
for fixed h, no matter how small h is chosen initially. Indeed, γ0r

n
0 ÝÑ 0 as n ÝÑ 8 whereas

γ1r
n
1 oscillates while increases in its magnitude.
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4.8 Problems

1. Derive a Taylor method of order 3 for the following initial value problem

y1pxq “ ´ypxq ` 2 sinpxq, yp0q “ ´1. (4.8.1)

What is the truncation error of the method? What is the exact solution for the IVP?

Solution: We first solve the given initial value problem (4.8.1). Solving the homo-
geneous part of (4.8.1) gives the complimentary solution Ycpxq “ Ce´x. We guess a
particular solution of the form

Yppxq “ A cospxq `B sinpxq.

Computing its first derivative and substituting into (4.8.1), we obtain

Y 1p ` Yp “ ´A sinpxq `B cospxq ` A cospxq `B sinpxq

“ pB ` Aq cospxq ` pB ´ Aq sinpxq

“ 2 sinpxq.

This yields two linear equations

#

B ` A “ 0

B ´ A “ 2,

and solving these yields A “ ´1, B “ 1, i.e. yppxq “ sinpxq ´ cospxq. Thus, the
general solution of (4.8.1) has the form

Y pxq “ Ycpxq ` Yppxq “ Ce´x ` sinpxq ´ cospxq

“ sinpxq ´ cospxq,

where C “ 0 is found using the initial condition yp0q “ ´1.

Denote Y pxnq “ Yn, n ě 0. To find the Taylor’s method of order 3 for (4.8.1),
consider the third order Taylor expansion of Y pxn`1q around xn:

Yn`1 “ Yn ` hY
1
n `

h2

2
Y 2n `

h3

6
Y p3qn `

h4

24
Y p4qpξnq

looooomooooon

local truncation error

, (4.8.2)

for some ξn P rxn, xn`1s. Next, we compute derivatives of Y pxq using (4.8.1):

Y 1pxq “ ´Y pxq ` 2 sinpxq

Y 2pxq “ ´Y 1pxq ` 2 cospxq

“ ´r´Y pxq ` 2 sinpxqs ` 2 cospxq

“ Y pxq ´ 2 sinpxq ` 2 cospxq

Y p3qpxq “ Y 1pxq ´ 2 cospxq ´ 2 sinpxq
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“ r´Y pxq ` 2 sinpxqs ´ 2 cospxq ´ 2 sinpxq

“ ´Y pxq ´ 2 cospxq

Y p4qpxq “ ´Y 1pxq ` 2 sinpxq

“ ´r´Y pxq ` 2 sinpxqs ` 2 sinpxq

“ Y pxq.

Substituting these into (4.8.2) and dropping the local truncation error, we obtain the
Taylor’s method of order 3 for (4.8.1):

yn`1 “ yn ` h
”

´ yn ` 2 sinpxnq
ı

`
h2

2

”

yn ´ 2 sinpxnq ` 2 cospxnq
ı

`
h3

6

”

´ yn ´ 2 cospxnq
ı

“

ˆ

1´ h`
h2

2
´
h3

6

˙

yn `
`

2h´ h2
˘

sinpxnq `

ˆ

h2
´
h3

3

˙

cospxnq.

for every n ě 0, with y0 “ ´1. Since Y p4qpxq “ Y pxq, the local truncation error for
each step is

TnpY q “
h4

24
Y pξnq for some ξn P rxn, xn`1s, n ě 1.

2. Construct an example of (using definitions and theory discussed in class, such as root
conditions, consistency condition, etc):

(a) a consistent but not stable linear multistep method;

Solution: Consider the following 2-step explicit linear multistep method:

yn`1 “ 3yn ´ 2yn´1 ´ hfpxn´1, yn´1q, n ě 1.

We first show that it is consistent by checking the consistency condition in
Theorem 4.6.2:

1
ÿ

j“0

aj “ a0 ` a1 “ 3´ 2 “ 1

´

1
ÿ

j“0

jaj `
1
ÿ

j“´1

bj “ ´a1 ` b´1 ` b0 ` b1 “ ´p´2q ´ 1 “ 1.

To check the root condition, solving ρprq “ 0 yields:

ρprq “ r2
´ 3r ` 2 “ pr ´ 2qpr ´ 1q “ 0 ùñ r “ 1 or r “ 2.

Thus, the root condition is violated and the proposed scheme is not stable. For
this scheme, the numerical solution will grow unboundedly as h ÝÑ 0, n ÝÑ 8

with nh “ t fixed.

(b) a stable but not consistent linear multistep method.
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Solution: Consider the general form of 1-step explicit linear multistep method:

yn`1 “ a0yn ` hb0fpxn, ynq. (4.8.3)

Clearly, (4.8.3) is stable if and only if |a0| ď 1 (from the root condition), and
not consistent if and only if a0 ‰ 1. Choosing a0 “ 1{2 and b0 “ 0 thus yields a
stable but not consistent linear multistep method:

yn`1 “
1

2
yn “

ˆ

1

2

˙n`1

y0, n ě 0.

The numerical solution does not blow up, but it does not converge to the true
solution of the initial value problem. Indeed, we see that yn ÝÑ 0 as n ÝÑ 8,
independent of the initial value y0.

3. Find the range of a P R for which the method

yn`2 ` pa´ 1qyn`1 ´ ayn “
h

4

”

pa` 3qfptn`2, yn`2q ` p3a` 1qfptn, ynq
ı

, (4.8.4)

is consistent and stable.

Solution: First, rearranging (4.8.4) into the general form of linear multistep method:

yn`2 “ p1´ aqyn`1 ` ayn `
h

4

”

pa` 3qfptn`2, yn`2q ` p3a` 1qfptn, ynq
ı

.

Clearly,

a0 “ p1´ aq, a1 “ a, b´1 “
a` 3

4
, b0 “ 0, b1 “

3a` 1

4
. (4.8.5)

In order for (4.8.4) to be consistent, we require that

1
ÿ

j“0

aj “ a0 ` a1 “ 1 (4.8.6a)

´

1
ÿ

j“0

jaj `
1
ÿ

j“´1

bj “ ´a1 ` b´1 ` b0 ` b1 “ 1. (4.8.6b)

Upon substituting (4.8.5) into (4.8.6), we obtain that the numerical method (4.8.4)
is consistent for any a P R. Indeed,

a0 ` a1 “ p1´ aq ` a “ 1

´a1 ` b´1 ` b0 ` b1 “ ´a`
a` 3

4
` 0`

3a` 1

4
“
´4a` a` 3` 3a` 1

4
“ 1.
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To determine the range of a P R for stability, we first write out the polynomial

ρprq “ r1`1
´

1
ÿ

j“0

ajr
1´j

“ r2
´ p1´ aqr ´ a.

Solving ρprq “ 0 using quadratic formula gives:

r˘ “
p1´ aq ˘

a

p1´ aq2 ` 4a

2
“
p1´ aq ˘

a

pa` 1q2

2

“
p1´ aq ˘ pa` 1q

2
.

The roots are

r` “
1´ a` a` 1

2
“ 1, r´ “

1´ a´ pa` 1q

2
“ ´a.

Now, in order for (4.8.4) to be stable, both r`, r´ must satisfy the root condition.
The first one states that r`, r´ must lie in the closed unit disk, which imposes |a| ď 1.
The second one states that roots on the boundary must be simple. For r`, we require

ρ1pr`q “ 2r` ´ p1´ aq “ a` 1 ‰ 0 ðñ a ‰ ´1.

The root r´ lies on the boundary for a “ ˘1, but since we already exclude a “ ´1,
we simply need to check whether r´ for a “ 1, i.e. r´ “ ´1, is simple:

ρ1p´1q “ 2p´1q ´ p1´ 1q “ ´2 ‰ 0.

Thus, the numerical method (4.8.4) is stable for any a P p´1, 1s. Consequently, the
numerical method (4.8.4) is consistent and stable if and only if a P p´1, 1s.

4. Show that the region of absolute stability for the trapezoidal method is the set of all
complex hλ with Repλq ă 0.

Solution: Applying the trapezoidal method to the model equation y1 “ λy yields

yn`1 “ yn `
h

2
rλyn ` λyn`1s, n ě 0,

and rearranging this yields

ˆ

1´
hλ

2

˙

yn`1 “

ˆ

1`
hλ

2

˙

yn ùñ yn`1 “

˜

1` hλ
2

1´ hλ
2

¸

yn “

ˆ

2` hλ

2´ hλ

˙

yn.

(4.8.7)
Upon iterating the recursive equation (4.8.7), we obtain

yn “

ˆ

2` hλ

2´ hλ

˙n

y0, n ě 0,
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and yn ÝÑ 0 as xn ÝÑ 8 if and only if

ˇ

ˇ

ˇ

ˇ

2` hλ

2´ hλ

ˇ

ˇ

ˇ

ˇ

ă 1. To find the region of absolute

stability, we simply expand this inequality:

|2` hλ|2 ă |2´ hλ|2

r2` hRepλqs2 `������
rh Impλqs2 ă r2´ hRepλqs2 `�������

r´h Impλqs2

�4` 4hRepλq `������
rhRepλqs2 ă �4´ 4hRepλq `������

rhRepλqs2

8hRepλq ă 0.

Since Repλq is assumed to be negative, we see that this inequality holds for all h ą 0.
Hence, the region of absolute stability for the trapezoidal method is the set of all
complex hλ with Repλq ă 0.
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Chapter 5

Numerical Methods for PDEs

The main focus of this chapter is finite difference methods for solving partial differential equa-
tions (PDEs) on a bounded domain, coupled with initial and boundary conditions. The basic
idea behind finite difference methods is to seek approximations to solutions of PDEs on a lat-
tice (grid) by replacing derivatives with finite difference approximations, i.e. derivatives are
approximated with suitably weighted differences of lattice values at neighbouring points called
difference formulas, see Section 5.1.1. Different choices of finite difference approximations lead
to numerical schemes with different properties, this is demonstrated using three classical PDEs:

1. Heat equation, which is of parabolic type,

2. Advection equation, which is of hyperbolic type,

3. Poisson equation, which is of elliptic type.

Solutions to a given PDEs often possess certain properties which are intrinsic to the PDEs itself.
As such, these desirable properties should carry over when designing and testing numerical
methods.

Among the important step in setting up finite difference methods is discretising the domain
of interest into a mesh grid, the hope being that the numerical solution converges to the true
solution of the PDE as the mesh spacing, typically ∆x and ∆t, both go to zero at arbitrary
independent rates. It turns out that convergence is expected only if ∆x and ∆t go to zero at
some specific rate, depending on both the scheme and the PDEs. Similar to numerical method
of ODEs, we will discuss consistency (accuracy) and stability of finite difference methods. This
leads to the fundamental theorem of finite difference methods, which says that under suitable
definition of stability, we may expect that stability is a sufficient condition for convergence of
consistent finite difference methods.

5.1 Background

This section forms the basis for many of the development of finite difference methods later. We
begin by deriving relevant difference formulas that we would use throughout this chapter. For
linear PDEs, applying finite difference method reduces the problem to solving a large but finite
matrix system. For reasons that will become apparent later, we study the spectrum of these
related finite difference matrices. Because we are solving difference equations, these numerical

103
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solutions are functions defined on a discrete set of points; as such, some discrete version of norms
are needed to correctly measure the magnitude of the error and this is done in Subsection 5.1.3.

5.1.1 Difference Formulas

Difference formulas are obtained using Taylor series and higher-order approximations are ob-
tained by retaining higher order terms in the Taylor series. For simplicity, we will work with
functions of one variable, say, u : D ÝÑ R for some open subset D Ă R but the same idea
extends to multivariable functions. Define discrete points xj “ jh P D, j “ 0, 1, . . . for some
constant h ą 0.

1. First-order forward difference: Expanding upxj`1q around the point xj gives:

upxj`1q “ upxjq ` hu
1
pxjq `

h2

2
u2pξjq

ùñ u1pxjq “
upxj`1q ´ upxjq

h
´
h

2
u2pξjq :“

δ`upxjq

h
`Ophq, (1stFD)

for some ξj P rxj, xj`1s.

2. First-order backward difference: Expanding upxj´1q around the point xj gives:

upxj´1q “ upxjq ´ hu
1
pxjq `

h2

2
u2pξjq

ùñ u1pxjq “
upxjq ´ upxj´1q

h
´
h

2
u2pξjq :“

δ´upxjq

h
`Ophq, (1stBD)

for some ξj P rxj´1, xjs.

These two approximations give first order accurate approximations to u1pxjq, i.e. the size of
the error is Ophq as h ÝÑ 0. To obtain a second order accurate approximation to u1pxjq,
expanding upxj`1q and upxj´1q around xj gives:

upxj`1q “ upxjq ` hu
1
pxjq `

h2

2
u2pxjq `

h3

6
up3qpxjq `Oph4

q (5.1.1a)

upxj´1q “ upxjq ´ hu
1
pxjq `

h2

2
u2pxjq ´

h3

6
up3qpxjq `Oph4

q (5.1.1b)

Substracting (5.1.1b) from (5.1.1a) and rearranging yields:

u1pxjq “
upxj`1q ´ upxj´1q

2h
´
h2

6
up3qpxjq `Oph3

q

:“
δcupxjq

2h
`Oph2

q,

(1stCD)

Now, suppose we expand upxj`1q and upxj´1q around xj to higher order:

upxj`1q “ upxjq ` hu
1
pxjq `

h2

2
u2pxjq `

h3

6
up3qpxjq `

h4

24
up4qpxjq `Oph6

q (5.1.2a)
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upxj´1q “ upxjq ´ hu
1
pxjq `

h2

2
u2pxjq ´

h3

6
up3qpxjq `

h4

24
up4qpxjq `Oph6

q (5.1.2b)

Adding (5.1.2a) and (5.1.2b) and rearranging yields the standard second-order central difference
approximation for u2pxjq:

u2pxjq “
upxj`1q ´ 2upxjq ` upxj´1q

h2
´
h2

12
up4qpxjq `Oph4

q

:“
δ2
cupxjq

h2
`Oph2

q,

(2ndCD)

Observe that either odd or even order terms will cancel out for symmetric centred approxima-
tions and typically leads to higher order approximations. All the terms with Big-O notations
are the local truncation errors of the corresponding finite difference approximations, which are
caused from truncating the Taylor series.

Remark 5.1.1. If we expect the error to behave like powers of h, then we can plot the error
against h on a log-log scale, since if the error behaves like

Error « Chp,

then
log |Error| « log |C| ` p log h,

i.e. on a log-log scale the error behaves linearly with slope p, where p is the order of accuracy.

5.1.2 Tridiagonal Matrix

Matrices with constant on diagonals, called Toeplitz matrices, arise frequently not only in
finite difference approximations, but also finite element and spectral approximations of PDEs.
Examples include tridiagonal and circulant matrices. Here, we only state and prove results
about the spectrum of tridiagonal matrix, which can be extremely useful in estimating the
matrix 2-norm under special circumstances.

Theorem 5.1.2. Consider the eigenvalue problem Auppq “ λpu
ppq, where A P Rnˆn is the

tridiagonal matrix
»

—

—

—

—

—

—

—

—

–

a b

b
. . . . . .

. . . . . . . . .

. . . . . . b

b a

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

with a, b P R. Let h “ 1{pn ` 1q. For each p “ 1, 2, . . . , n, the eigenpairs pλp, u
ppqq are defined

by:

λp “ a` 2b cosppπhq

u
ppq
j “ sinppπjhq, j “ 1, . . . , n
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Proof. Examining the eigenvalue equation Auppq “ λpu
ppq component-wise, we obtain:

bu
ppq
j´1 ` au

ppq
j ` bu

ppq
j`1 “ λpu

ppq
j , j “ 1, 2, . . . , n,

with the convention u
ppq
0 “ u

ppq
n`1 “ 0. We verify directly that the given expression for pλp, u

ppqq

are eigenpairs of A. For j “ 2, . . . , n´ 1,

bu
ppq
j´1 ` au

ppq
j ` bu

ppq
j`1 “ b sinppπpj ´ 1qhq ` a sinppπjhq ` b sinppπpj ` 1qhq

“ b sinppπjh´ pπhq ` a sinppπjhq ` b sinppπjh` pπhq

“ a sinppπjhq ` b
”

sinppπjh` pπhq ` sinppπjh´ pπhq
ı

“ a sinppπjhq ` b
”

2 sinppπjhq cosppπhq
ı

“ ra` 2b cosppπhqs sinppπjhq

“ λpu
ppq
j .

For j “ 1, we apply the double-angle formula:

bu
ppq
0 ` au

ppq
1 ` bu

ppq
2 “ au

ppq
1 ` bu

ppq
2

“ a sinppπhq ` b sinppπ2hq

“ a sinppπhq ` b
”

2 sinppπhq cosppπhq
ı

“ ra` 2b cosppπhqs sinppπhq

“ λpu
ppq
1

For j “ n, we apply the difference formula for sine:

bu
ppq
n´1 ` au

ppq
n ` bu

ppq
n`1 “ bu

ppq
n´1 ` au

ppq
n

“ b sinppπpn´ 1qhq ` a sinppπnhq

“ b
”

sinppπnhq cosppπhq ´ cosppπnhq sinppπhq
ı

` a sinppπnhq

“ ra` 2b cosppπhqs sinppπnhq,

where the last equality follows provided we can show that´ cosppπnhq sinppπhq “ sinppπnhq cosppπhq.
The trick is to rewrite cosppπnhq and sinppπhq in terms of complex exponential:

´ cosppπnhq sinppπhq “ ´
1

4i
peipπnh ` e´ipπnhqpeipπh ´ e´ipπhq

“ ´
1

4i

`

eipπpn`1qh
´ eipπnhe´ipπh ` e´ipπnheipπh ´ e´ipπpn`1qh

˘

“
1

4i

`

e´ipπpn`1qh
` eipπnhe´ipπh ´ e´ipπnheipπh ´ eipπpn`1qh

˘

“
1

4i

`

eipπpn`1qh
` eipπnhe´ipπh ´ e´ipπnheipπh ´ e´ipπpn`1qh

˘

“
1

4i

”

eipπnhpeipπh ` e´ipπhq ´ e´ipπnhpeipπh ` e´ipπhq
ı

“
1

4i

`

eipπnh ´ e´ipπnhqpeipπh ` eipπh
˘



Numerical Methods for PDEs 107

“ sinppπnhq cosppπhq.

The desired result follows since choosing different p P t1, . . . , nu gives n distinct eigenvalues.
�

Very often, tridiagonal matrices arised from finite-difference methods are strictly diagonally
dominant. The next theorem tells us that these tridiagonal matrices are in fact non-singular,
i.e. they are invertible.

Theorem 5.1.3. Strictly diagonally dominant matrices are invertible.

Proof. Suppose by contradiction that A P Rnˆn is a strictly diagonally dominant matrix that
is singular. There exists an x P Rn, x ‰ 0 such that Ax “ 0. Let J P t1, . . . , nu be such that

|xJ | “ max
j“1,...,n

|xj|.

Expanding the Jth component of Ax yields:

0 “ pAxqJ “
n
ÿ

j“1

aJjxj ùñ aJJ “ ´
n
ÿ

j‰J

aJj
xj
xJ

|aJJ | ď
n
ÿ

j‰J

|aJj|

ˇ

ˇ

ˇ

ˇ

xj
xJ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

j‰J

|aJj|.

This contradicts the assumption that A is strictly diagonally dominant and the statement
follows.

�

5.1.3 Discrete Norms

The following discussion is based from [LeV07, pp. 251] and is in the one-dimensional setting
but it can be generalised to higher dimension d ą 1. Choose Ω “ p0, 1q Ă R and subdivide the
interval r0, 1s uniformly into N ` 1 subintervals. This gives N ` 2 grid points x0, x1, . . . , xN`1,
with N interior grid points and 2 boundary grid points. Finite difference methods produce a
set of discrete values puiqiPΛ, where Λ is the index set depending on how we incorporate the
boundary data into the finite difference methods; typically Λ “ 1, . . . , N . Most of the time,
puiq approximates the true value of the solution u at the point pxiq, i.e. ui « upxiq for all i P Λ.

In discussing the convergence of numerical methods for ODEs, we measure the magnitude of
the error function using certain norms. Because we have a discrete set of approximate solutions
here, let us define the error vector E “ U ´ Uexact, where

U “ pu1, . . . , uNq and Uexact “ pupx1q, . . . , upxNqq.

Choosing the standard 1-norm:

}E}1 “
N
ÿ

j“1

|ej|,
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turns out to provide a wrong interpretation of the magnitude of the error. Indeed, }E}1 can
be expected to be roughly N times as large as the error at any single grid point and as N
increases, }E}1 might diverge even if the error at each grid point decreases, which is clearly
not the correct behaviour. Since we started by discretising the domain, we should discretise
the L1-norm instead:

} ¨ }1 “

ż 1

0

p¨qpxq dx,

which suggests the following function:

}E}1 “ h
N
ÿ

j“1

|ej|.

Since h “
1

N ` 1
, this discrete-grid-definition of } ¨ }1 is just the average value of the error

vector E over the interval r0, 1s. One can show that this function defines a norm. Moreover,
}E}1 corresponds exactly to a Riemann sum and we recover the standard L1-norm as h ÝÑ 0.
A similar argument shows that the discrete-grid-definition of } ¨ }p for p P r1,8q should be:

}e}p “

˜

h
N
ÿ

j“1

|ej|
p

¸1{p

.

For the case p “ 8, the 8-norm does not need to be scaled since h1{p ÝÑ 1 as p ÝÑ 8. Unless
stated otherwise, we assume that } ¨ }p takes the discrete-grid-definition when we analyse finite
difference methods.

5.1.4 Von Neumann Stability Analysis

The von Neumannn stability analysis (also known as Fourier stability analysis) provides nec-
essary condition for the stability of finite difference schemes as applied to constant coefficient
linear PDEs. Due to its simplicity, it is often used in practice to provide a good guess for
the time step restriction (if any) used in the scheme. Motivated by the fact that the general
solution to linear homogeneous PDEs is a Fourier series, the main idea of the von Neumann
stability analysis is to study the effects of finite difference schemes on each of these Fourier
modes.

Let upx, tq be the true solution of some given homogeneous PDEs. Assume an ansatz of
the form

upx, tq “ wptqerxI , where I2
“ ´1 and r= Fourier frequencies.

Evaluating upx, tq at a discrete grid point pxi, tjq yields

upxi, tjq :“ uji “ wje
rxiI . (5.1.3)

Substituting (5.1.3) into the given finite difference method yields

wj`1 “ Kwj “ Kj`1w0, j “ 0, 1, . . . , (5.1.4)

where K is called the amplification factor for the method. One might wonder why the same
Fourier-type approach works for finite difference operator, the reasons is that the function
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erxiI is an eigenfunction for any translation-invariant finite difference operator. We see that to
obtain a stable method, wj must remain bounded as j ÝÑ 8 for any Fourier frequencies r.
This means that a necessary condition for the stability of the finite difference scheme is |K| ď 1.

Remark 5.1.4. It is important to keep in mind that the von Neumann stability analysis is usu-
ally applied to infinite domain or bounded domain with periodic boundary conditions (which
is equivalent to a Cauchy problem with periodic initial data). Moreover, it only addresses the
issue of stability of the PDE discretisation but does not take into account the discretisation of
the boundary conditions (if any), such as Neumann and Robin boundary conditions.

5.1.5 Local Truncation Error and Finite Precision Arithmetic Error

The local truncation error (LTE) is the error caused from discretising the differential operator
L of a given PDE, i.e. it is the error coming from dropping the higher order terms in the finite
difference approximations. It can also be obtained as follows: Suppose Lu “ 0, then the local
truncation error is obtained as τij “ Ldiffu, where Ldiff is the finite difference operator (discrete
differential operator). In other words, it is obtained by replacing the numerical solution with
the true solution in the finite difference scheme.

Definition 5.1.5. A finite difference method is said to be consistent if the discrete problem
approximates the continuous problem, i.e. the local truncation error τij converges to 0 as the
mesh spacing converges to 0.

Convergence is related to the magnitude of the difference between the true solution and the
numerical solution from the finite difference scheme. Denote the following quantity:

upxi, tjq “ exact solution of PDE at pxi, tjq

uji “ exact solution of finite difference scheme at pxi, tjq

uji “ solution of difference equation from finite difference scheme at pxi, tjq

Calculating the error by component, we obtain:

lij “ |upxi, tjq ´ u
j
i | ď |upxi, tjq ´ u

j
i | ` |u

j
i ´ u

j
i |

looomooon

„10´16

,

where the second difference accounts for finite precision arithmetic error.

5.2 Heat Equations and Parabolic Problems

A simple example of a parabolic PDE is the one-dimensional heat equation:

ut ´Duxx “ 0 in 0 ă x ă L, t ą 0,
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which models the heat conduction in a rod, with D the thermal diffusivity of the rod. In
practice, the solution is obtained only for a finite time T ą 0. To solve the heat equation, we
need to specify initial condition at t “ 0 and boundary conditions at x “ 0 and x “ L:

upx, 0q “ gpxq, 0 ď x ď L

up0, tq “ ulptq, t ą 0

upL, tq “ urptq, t ą 0.

For the remaining section, we only deal with Dirichlet boundary conditions, but there are other
boundary conditions such as Neumann boundary condition which specify the heat flux across
the boundary and Robin boundary condition which are combinations of both Dirichlet and
Neumann.

Example 5.2.1. Take D “ 1, L “ 1 and ulptq “ urptq “ 0. One can obtain an explicit solution
to the heat equation using the separation of variables method:

upx, tq “
8
ÿ

n“1

Ane
´n2π2t sinpnπxq, where An “ 2

ż 1

0

gpxq sinpnπxq dx.

We list three essential features of solutions to the heat equation:

1. Smoothing property, which says that the solution to the heat equation is smooth on
the interior even if the initial data are discontinuous.

2. Maximum principles, which states that the extremum of the solution occurs on the
boundary of the space-time cylinder. An important consequence is that the solution of
the heat equation is stable with respect to small perturbation in the initial data.

3. Instant messaging, which means that the heat equation transmits information in-
stantly.

Consider the initial-boundary value problem for the inhomogeneous heat equation:

ut ´ uxx “ fpx, tq, 0 ă x ă L, t ą 0

upx, 0q “ gpxq, 0 ď x ď L

up0, tq “ hlptq, t ą 0

upL, tq “ hrptq, t ą 0.

(Heat)

We discretise both the spatial and time domain as follows, which gives a set of discrete grid
points pxi, tjq:

xi “ ih, i “ 0, 1, . . . , N ` 1

tj “ j∆t, j “ 0, 1, . . . ,M.

with h ą 0 the spatial mesh spacing with pN ` 1q spatial subintervals and ∆t the time step
with M time subintervals. For a uniform grid, we have

h “
L

N ` 1
, ∆t “

T

M
.
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(x0,t0) (x2,t0) (x4,t0)

(x0,t2)

(x0,t4)

(x4,t2)

(x4,t4)

x

t

Figure 5.1: An example of a mesh grid with L “ T “ 4 and N “ 3,M “ 4. The black and
blue dots represent the initial and boundary data respectively. The red dots are the interior
nodes where the approximation solution is computed.

5.2.1 Forward-Time Central-Space (FTCS) Scheme

Let uji « upxi, tjq represent the numerical approximation at a grid point pxi, tjq. At each
discrete point pxi, tjq, we have from (Heat)

uxxpxi, tjq “ utpxi, tjq ´ fpxi, tjq. (5.2.1)

The Forward-Time Central-Space (FTCS) scheme is obtained by replacing the time
derivative ut by the first-order forward difference approximation (1stFD) and the spatial deriva-
tive uxx by the second-order central difference approximation (2ndCD). This gives:

upxi`1, tjq ´ 2upxi, tjq ` upxi´1, tjq

h2
` τij “

upxi, tj`1q ´ upxi, tjq

∆t
´ fpxi, tjq, (5.2.2)

where the local truncation error τij has the form

τij “
∆t

2
uttpxi, ηjq ´

h2

12
uxxxxpxi, tjq `Oph4

q “ Op∆tq `Oph2
q.

Denote λ “
∆t

h2
, multiplying each side of (5.2.2) by ∆t and rearranging gives:

upxi, tj`1q “ upxi, tjq ` λ
”

upxi`1, tjq ´ 2upxi, tjq ` upxi´1, tjq
ı

`∆tfpxi, tjq `∆tτij. (5.2.3)

Dropping the local truncation error τij and setting upxi, tjq « uji , fpxi, tjq « f ji in (5.2.3), we
obtain:

uj`1
i “ λuji`1 ` p1´ 2λquji ` λu

j
i´1 `∆tf ji , (FTCS)

for i “ 1, 2, . . . , N and j “ 0, 1, . . . ,M ´ 1, together with initial and boundary conditions:

u0
i “ gpxiq “ gi, i “ 0, 1, . . . , N ` 1

uj0 “ hlptjq “ hj0, j “ 1, . . . ,M

ujN`1 “ hrptjq “ hjN`1, j “ 1, . . . ,M
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uji´1 uji uji`1

uj`1
i

tj`1

tj

Figure 5.2: Four-point stencil for the FTCS scheme.

The (FTCS) scheme is said to be first order accurate in time and second order accurate
in space since the truncation error is Op∆tq `Oph2q.

Stencil and Matrix Formulation

Note that the (FTCS) scheme is an explicit numerical method, since uj`1
i is uniquely determined

from three values uji´1, u
j
i , u

j
i`1. This yields the four-point stencil for the (FTCS) scheme, as

shown in Figure (5.4). Now, define:

Uj :“

»

—

—

—

—

—

–

uj1

uj2
...

ujN

fi

ffi

ffi

ffi

ffi

ffi

fl

, Fj “

»

—

—

—

—

—

–

f j1 ` u
j
0{h

2

f j2
...

f jN ` u
j
N`1{h

2

fi

ffi

ffi

ffi

ffi

ffi

fl

, G “

»

—

—

—

—

—

–

g1

g2

...

gN

fi

ffi

ffi

ffi

ffi

ffi

fl

,

where we choose to incorporate the boundary conditions into the vector Fj. We can then
rewrite the (FTCS) scheme as a matrix system:

Uj`1 “ AUj `∆tFj, j “ 0, 1, . . . ,M ´ 1, U0 “ G,

where A P RNˆN is the symmetric tridiagonal matrix:

A “

»

—

—

—

—

—

—

—

—

–

1´ 2λ λ

λ
. . . . . .

. . . . . . . . .

. . . . . . λ

λ 1´ 2λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Von Neumann Stability Analysis

Assume an ansatz of the form
uji “ wje

rxiI . (5.2.4)

Substituting (5.2.4) into the (FTCS) scheme (assuming f ” 0), we obtain

wj`1e
rxiI “ λwje

rxi`1I ` p1´ 2λqwje
rxiI ` λwje

rxi´1I
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“ wje
rxiI

´

λerhI ` p1´ 2λq ` λe´rhI
¯

“ wje
rxiI

´

2λ cosprhq ` p1´ 2λq
¯

“ wje
rxiI

´

2λr1´ 2 sin2
prh{2qs ` p1´ 2λq

¯

“ wje
rxiI

´

1´ 4λ sin2
prh{2q

¯

,

where we use the following formula:

2 cos θ “ eIθ ` e´Iθ and cosp2θq “ 1´ 2 sin2 θ.

Cancelling the exponential term, we obtain

wj`1 “ p1´ 4λ sin2
prh{2qqwj “ Kwj “ Kj`1w0, j “ 0, 1, . . . . (5.2.5)

A necessary condition for the stability of the (FTCS) scheme is:

|K| “ |1´ 4λ sin2
prh{2q| ď 1.

The upper inequality is trivially satisfied since λ ą 0. For the lower inequality,

1´ 4λ sin2
prh{2q ě ´1 ùñ 2λ sin2

prh{2q ď 1,

and this holds for any r provided λ ď 1{2. Hence, the (FTCS) scheme is conditionally stable
only if:

λ “
∆t

h2
ď

1

2
.

For diffusion coefficient D ‰ 1, a similar analysis shows that the (FTCS) scheme is conditionally
stable only if:

λ ď
1

2D
.

This is expected due to the instant messaging property of the solution to the heat equation.

Remark 5.2.2. This stability condition says that the time step must be much smaller than
the mesh size to control the growth of the approximate solution. Moreover, it agrees with the
intuition that one requires the finite-difference approximation to have similar orders of accu-
racy, i.e. ∆t « h2.

Global Error

Define the error value Ej
i “ upxi, tjq ´ u

j
i . Subtracting the (FTCS) scheme from (5.2.3) yields

the error equation:
Ej`1
i “ λEj

i`1 ` p1´ 2λqEj
i ` λE

j
i´1 `∆tτij, (5.2.6)

for i “ 1, 2, . . . , N and j “ 0, 1, . . . ,M ´ 1, with initial and boundary conditions:

E0
i “ 0, i “ 0, 1, . . . , N ` 1
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Ej
0 “ 0, j “ 1, . . . ,M

Ej
N`1 “ 0, j “ 1, . . . ,M.

Assuming 1´ 2λ ě 0, applying triangle inequality gives:

|Ej`1
i | ď λ|Ej

i`1| ` p1´ 2λq|Ej
i | ` λ|E

j
i´1| `∆t|τij|.

Next, taking the supremum over all i “ 0, 1, . . . , N ` 1 yields:

max
i
|Ej`1

i | ď pλ` 1´ 2λ` λqmax
i
|Ej

i | `∆tmax
i
|τij|

“ max
i
|Ej

i | `∆tmax
i
|τij|

ď max
i
|E0

i | `∆t

˜

j
ÿ

k“0

max
i
|τik|

¸

“ ∆t

˜

j
ÿ

k“0

max
i
|τik|

¸

Finally, taking the supremum over all j “ 0, 1, . . . ,M yields:

max
i,j
|Ej

i | ď ∆t

˜

M
ÿ

k“0

max
i
|τik|

¸

ďM∆tmax
i,j
|τij| “ T max

i,j
|τij| “ Op∆tq `Oph2

q.

5.2.2 Backward-Time Central-Space (BTCS) Scheme

Compared to the (FTCS) scheme, the Backward-Time Central-Space (BTCS) scheme is ob-
tained by replacing the time derivative ut with the first-order backward difference approxima-
tion (1stBD). We obtain:

upxi`1, tjq ´ 2upxi, tjq ` upxi´1, tjq

h2
` τij “

upxi, tjq ´ upxi, tj´1q

∆t
´ fpxi, tjq, (5.2.7)

where the local truncation error τij has the form

τij “
∆t

2
uttpxi, ηjq ´

h2

12
uxxxxpxi, tjq `Oph4

q “ Op∆tq `Oph2
q,

for some ηj P rtj´1, tjs. Denote λ “
∆t

h2
, multiplying each side of (5.2.7) by ∆t and rearranging

gives:

λupxi`1, tjq ´ 2λupxi, tjq ` λupxi´1, tjq “ upxi, tjq ´ upxi, tj´1q ´∆tfpxi, tjq ´∆tτij. (5.2.8)

Dropping the local truncation error τij and setting upxi, tjq « uji , fpxi, tjq « f ji in (5.2.8), we
obtain:

λuji`1 ´ p1` 2λquji ` λu
j
i´1 “ ´u

j´1
i ´∆tf ji , (BTCS)
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for i “ 1, 2, . . . , N and j “ 1, 2, . . . ,M , with initial and boundary conditions:

u0
i “ gpxiq “ gi, i “ 0, 1, . . . , N ` 1

uj0 “ hlptjq “ hj0, j “ 0, 1, . . . ,M

ujN`1 “ hrptjq “ hjN`1, j “ 0, 1, . . . ,M

The (BTCS) scheme is first order accurate in time and second order accurate in space
since the truncation error is Op∆tq `Oph2q.

Stencil and Matrix Formulation

Note that the (BTCS) scheme is an implicit numerical method, since one needs to solve a
tridiagonal system of equations for all values tujiu

N
j“1 for a particular time step j. The stencil

for the (BTCS) scheme is a four-point stencil, as shown in Figure (5.3). Now, define:

Uj :“

»

—

—

—

—

—

–

uj1

uj2
...

ujN

fi

ffi

ffi

ffi

ffi

ffi

fl

, Fj :“

»

—

—

—

—

—

–

f j1 ` pu
j
0{h

2q

f j2

. . .

f jN ` pu
j
N`1{h

2q

fi

ffi

ffi

ffi

ffi

ffi

fl

, G :“

»

—

—

—

—

—

–

g1

g2

...

gN

fi

ffi

ffi

ffi

ffi

ffi

fl

,

where we again incorporate the boundary conditions into the vector Fj. We can then rewrite
the (BTCS) scheme as a matrix system:

BUj “ Uj´1 `∆tFj, j “ 1, 2, . . . ,M, U0 “ G,

where B is the symmetric tridiagonal matrix:

B “

»

—

—

—

—

—

—

—

—

–

1` 2λ ´λ

´λ
. . . . . .

. . . . . . . . .

. . . . . . ´λ

´λ 1` 2λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P RNˆN ,

Note that the matrix B is invertible since B is strictly diagonally dominant. One can show
that Uj depends on every component of Uj´1, this phenomena is called instant messaging.

Von Neumann Stability Analysis

Assume an ansatz of the form
uji “ wje

rxiI . (5.2.9)

Assuming f ” 0, substituting (5.2.9) into the (BTCS) scheme yields:

λwje
rpxi`hqI ´ p1` 2λqwje

rxiI ` λwje
rpxi´hqI “ ´wj´1e

rxiI
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uji´1 uji uji`1

uj´1
i

tj`1

tj

Figure 5.3: Four-point stencil for the BTCS scheme.

wj���erxiI
´

λerhI ´ p1` 2λq ` λe´rhI
¯

“ ´wj´1�
��erxiI

wj

´

2λ cosprhq ´ p1` 2λq
¯

“ ´wj´1

wj

´

2λr1´ 2 sin2
prh{2qs ´ 1´ 2λ

¯

“ ´wj´1

wj

´

4λ sin2
prh{2q ` 1

¯

“ wj´1

ùñ wj “

ˆ

1

1` 4λ sin2prh{2q

˙

wj´1 “ Kwj´1, (5.2.10)

and iterating (5.2.10) gives wj “ Kjw0, j “ 0, 1, . . .. Since |K| ď 1 for any ∆t ą 0, the (BTCS)
scheme is unconditionally stable and so it has better stability property compare to the (FTCS)
scheme. However, it is still advantageous to choose ∆t “ Oph2q, since we lose the spatial
accuracy if the time step is chosen to be ∆t “ Ophq instead.

5.2.3 Theta Method

The theta method could be viewed as an elegant solution to the following problem: can we
combine both the (FTCS) and (BTCS) schemes in such a way that it generates a more accurate
method with improved stability property? First, in a more convenient notation we have:

(FTCS): uj`1
i ´ uji “ Hj

i

(BTCS): uj`1
i ´ uji “ Hj`1

i ,

where
Hj
i “ λpuji`1 ´ 2uji ` u

j
i´1q `∆tf ji .

The idea is to take convex combination of the (FTCS) scheme at time step j and the (BTCS)
scheme at time step j ` 1, i.e. for any θ P r0, 1s,

uj`1
i ´ uji “ θpuj`1

i ´ uji q ` p1´ θqpu
j`1
i ´ uji q

“ θHj
i ` p1´ θqH

j`1
i . (Theta)

Observe that

for θ “ 0: recover the (BTCS) scheme.

for θ “ 1: recover the (FTCS) scheme.
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Von Neumann Stability Analysis

We assume an ansatz of the form

uji “ wje
rxiI , where I2

“ ´1 and r=Fourier frequencies.

Assume f ” 0, since we expect (Theta) to have the form wj`1 “ Kwj for some K depending
on ∆t, h, θ, r, we rearrange it in such a way that the LHS and RHS have terms at time step
j ` 1 and j respectively:

uj`1
i ´ λp1´ θq

”

uj`1
i`1 ´ 2uj`1

i ` uj`1
i´1

ı

“ uji ` λθ
”

uji`1 ´ 2uji ` u
j
i´1

ı

. (5.2.11)

We now substitute the ansatz into (5.2.11) and simplify terms using these two trigonometric
identity:

2 cosφ “ eφI ` e´φI and cosp2φq “ 1´ 2 sin2
pφq.

For the LHS expression,

uj`1
i ´ λp1´ θq

”

uj`1
i`1 ´ 2uj`1

i ` uj`1
i´1

ı

“ wj`1

”

erxiI ´ λp1´ θq
´

erxiIerhI ´ 2erxi ` erxiIe´rhI
¯ı

“ wj`1e
rxiI

”

1´ λp1´ θq
´

erhI ´ 2` e´rhI
¯ı

“ wj`1e
rxiI

”

1´ λp1´ θq
´

2 cosprhq ´ 2
¯ı

“ wj`1e
rxiI

”

1´ 2λp1´ θq
´

cosprhq ´ 1
¯ı

“ wj`1e
rxiI

„

1´ 2λp1´ θq

ˆ

´2 sin2

ˆ

rh

2

˙˙

“ wj`1e
rxiI

„

1` 4λp1´ θq sin2

ˆ

rh

2

˙

,

and for the RHS expression,

uji ` λθ
”

uji`1 ´ 2uji ` u
j
i´1

ı

“ wj

”

erxiI ` λθ
´

erxiIerhI ´ 2erxi ` erxiIe´rhI
¯ı

“ wje
rxiI

”

1` λθ
´

erhI ´ 2` e´rhI
¯ı

“ wje
rxiI

”

1` λθ
´

2 cosprhq ´ 2
¯ı

“ wje
rxiI

”

1` 2λθ
´

cosprhq ´ 1
¯ı

“ wje
rxiI

„

1` 2λθ

ˆ

´2 sin2

ˆ

rh

2

˙˙

“ wje
rxiI

„

1´ 4λθ sin2

ˆ

rh

2

˙

Equating these two simplified expressions and cancelling the exponential term yields:

wj`1 “

˜

1´ 4λθ sin2
`

rh
2

˘

1` 4λp1´ θq sin2
`

rh
2

˘

¸

wj “ Kwj.
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To conclude the stability analysis, we need to determine if there are restrictions on λ such that
|K| ď 1, keeping in mind that such condition necessarily depends on the value of θ. Since

λ ą 0, 1 ´ θ ě 0 for any θ P r0, 1s and sin2

ˆ

rh

2

˙

ě 0, we see that K ď 1 for any λ ą 0,

regardless of the choice of θ P r0, 1s. For notational convenience, denote A “ sin2

ˆ

rh

2

˙

.

Expanding the inequality K ě ´1 yields:

1´ 4λθA

1` 4λp1´ θqA
ě ´1

1´ 4λθA ě ´1´ 4λp1´ θqA

1´ 4λθA ě ´1´ 4λA` 4λθA

2´ 8λθA ě ´4λA

1´ 4λθA ě ´2λA

1 ě 4λθA´ 2λA

1 ě 2λAp2θ ´ 1q. (5.2.12)

If 2θ ´ 1 ď 0, i.e. 0 ď θ ď
1

2
, then (5.2.12) is satisfied for any λ ą 0 since both λ and A are

nonnegative. On the other hand, if 2θ ´ 1 ě 0, i.e.
1

2
ď θ ď 1,

2λAp2θ ´ 1q ď 1 ùñ A ď
1

2λp2θ ´ 1q
(5.2.13)

Since A “ sin2

ˆ

rh

2

˙

ď 1 for any r, h, we see that (5.2.13) is satisfied for any choice of r if

1

2λp2θ ´ 1q
ě 1, i .e. λ ď

1

2p2θ ´ 1q
.

Hence, we obtain the following stability condition for the (Theta) method:

1. If θ P r0, 1{2s, then it is unconditionally stable, i.e. the scheme is stable for any choice of
time step.

2. If θ P r1{2, 1s, then it is stable if λ satisfies 0 ď λ ď
1

2p2θ ´ 1q
.

5.2.4 Crank-Nicolson Method

For the special case θ “
1

2
of the (Theta) method, we obtain the Crank-Nicolson method:

uj`1
i ´ uji “ ∆trf ji ` f

j`1
i s `

λ

2

”

puji`1 ´ 2uji ` u
j
i´1q ` pu

j`1
i`1 ´ 2uj`1

i ` uj`1
i´1 q

ı

(Crank-Nicolson)

which coincides with applying trapezoidal rule on Hj
i . The (Crank-Nicolson) method is second

order accurate in time and second order accurate in space since the local truncation
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uji´1 uji uji`1

uj`1
i´1 uj`1

i uj`1
i`1

tj`1

tj

Figure 5.4: Six-point stencil for the Crank-Nicolson method, as well as the Theta method.

error isOp∆t2q`Oph2q, as such we can choose the time step ∆t “ Ophq without losing accuracy
in space. Moreover, it is unconditionally stable and is the only second-order theta method in
both space and time. The global error satisfies:

|upxi, tjq ´ uij| “ Op∆t2q `Oph2
q.

Rearranging the (Crank-Nicolson) method as follows:

uj`1
i ´

λ

2

”

uj`1
i`1 ´ 2uj`1

i ` uji´1

ı

“ uji `
λ

2

”

uji`1 ´ 2uji ` u
j
i´1

ı

`∆trf ji ` f
j`1
i s

2uj`1
i ´ λ

”

uj`1
i`1 ´ 2uj`1

i ` uji´1

ı

“ 2uji ` λ
”

uji`1 ´ 2uji ` u
j
i´1

ı

` 2∆trf ji ` f
j`1
i s

´λuj`1
i`1 ` p2` 2λquj`1

i ´ λuj`1
i´1 “ λuji`1 ` p2´ 2λquji ` λu

j
i´1 ` 2∆trf ji ` f

j`1
i s.

Define the following vectors:

Uj :“

»

—

—

—

—

—

–

uj1

uj2
...

ujN

fi

ffi

ffi

ffi

ffi

ffi

fl

, Fj :“

»

—

—

—

—

—

–

f j1 ` pu
j
0{h

2q

f j2

. . .

f jN ` pu
j
N`1{h

2q

fi

ffi

ffi

ffi

ffi

ffi

fl

, G :“

»

—

—

—

—

—

–

g1

g2

...

gN

fi

ffi

ffi

ffi

ffi

ffi

fl

,

We can then rewrite the (Crank-Nicolson) scheme as the matrix system:

pB ` IqUj`1 “ pA` IqUj ` 2∆tpFj`1 ` Fjq, j “ 0, 1, . . . ,M ´ 1, U0 “ G,

where B P RNˆN is the symmetric tridiagonal matrix arises in the (BTCS) scheme and
A P RNˆN is the symmetric tridiagonal matrix arises in the (FTCS) scheme.

5.3 Advection Equations and Hyperbolic Systems

Acoustic waves, electromagnetic waves, shock waves and many other types of waves can be
modelled by hyperbolic PDEs. The prototype for all hyperbolic PDEs is the advection equa-
tion which arises when a substance is carried along with a flow; it is the simplest mathematical
equation that produces travelling waves. For the Cauchy problem, we need the initial data at
time t “ 0.

#

ut ` aux “ 0, ´8 ă x ă 8, t ą 0

upx, 0q “ gpxq, ´8 ă x ă 8
(5.3.1)
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where a is a constant. Application of advection equation includes gas dynamics and traffic
flows, where u is the density of cars and a is the speed of cars.

We claim that the exact solution is of the form

upx, tq “ gpx´ atq. (5.3.2)

Indeed,
ut ` aux “ ´ag

1
px´ atq ` ag1px´ atq “ 0.

Example 5.3.1. Consider the advection equation with a ą 0 and with initial condition

gpxq “

#

1 if 0 ď x ď 1,

0 otherwise.

The solution is given by

upx, tq “ gpx´ atq “

#

1 if 0 ď x´ at ď 1,

0 otherwise.

or

upx, tq “

#

1 if at ď x ď 1` at,

0 otherwise.

1 at at` 1

t “ 0 t ą 0

x

upx, tq

Figure 5.5: The solution travels to the right with speed a ą 0 without change of shape.

We summarise some of the key observations about the solution (5.3.2):

1. The solution is constant along the lines of the form x ´ at “ constant. These lines are
called characteristics and information propogates along the characteristics at speed
a ą 0.

2. The solution at a given position px̄, t̄q is determined entirely by the value x0 “ x̄´ at̄.

3. The initial shape is preserved. Moreover, the solution formula (5.3.2) requires no differ-
entiability of g. In general, we allow for discontinuous solutions for hyperbolic problems
such as shock waves.
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x

t

(a) a ą 0

x

t

(b) a ă 0

Figure 5.6: Characteristics of the advection equation for positive and negative a. Observe that
the solution at px̄, t̄q will not feel it if we introduce a perturbation around x0 “ x̄´ at̄.

5.3.1 Boundary Conditions: Inflow and Outflow Characteristics

On the real line, the initial condition upx, 0q “ gpxq itself uniquely determines the solution so
the Cauchy problem (5.3.1) is well-posed. On a finite interval, boundary data are needed and
these must be imposed at the correct boundary part, otherwise the problem is overdetermined.

For simplicity, consider the advection equation with a ą 0 on the domain Ω “ r0, 1sˆr0,8q.
Referring to Figure 5.6, the characteristics propagate from left to right. In particular,

1. The characteristics leaving the left boundary x “ 0 are travelling towards Ω, i.e. these
are inflow characteristics.

2. The characteristics leaving the right boundary x “ 1 are travelling away from Ω, i.e.
these are outflow characteristics.

Thus, the problem is well-posed if we impose boundary data up0, tq “ u0ptq on the left boundary
x “ 0, in addition to the initial condition upx, 0q “ gpxq. The resulting solution has the form:

upx, tq “

$

&

%

gpx´ atq if x´ at ą 0,

u0

´

t´
x

a

¯

if x´ at ă 0.

Note that u will have a jump discontinuity along the characteristic x´ at “ 0 if u0p0q ‰ gp0q.

Remark 5.3.2. If a ă 0, then we have outflow characteristics from the left boundary x “ 0
and inflow characteristics from the right boundary x “ 1. Consequently, we must only impose
boundary data up1, tq “ u1ptq on the right boundary x “ 1. The resulting solution has the
form:

upx, tq “

$

&

%

gpx´ atq if x´ at ă 1,

u1

ˆ

t´
x´ 1

a

˙

if x´ at ą 1.
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As before, u will have a jump discontinuity along the characteristics x´at “ 1 if u1p1q ‰ gp1q.

x “ 0 x “ 1

x

t

Figure 5.7: With a ą 0, the purple characteristics carry information from gpx0q “ gpx ´ atq,

while the blue characteristics carry information from u0

´

t´
x

a

¯

.

5.3.2 First-Order Methods

Consider the advection equation on a bounded domain:

ut ` aux “ 0 in pxL, xRq ˆ p0, T s

upx, 0q “ gpxq on rxL, xRs,

where the boundary condition for t ą 0 is

upxL, tq “ uLptq if a ą 0,

upxR, tq “ uRptq if a ă 0.

We discretise this on a uniform grid with spatial mesh spacing h “
xR ´ xL
N

and time step

∆t “
T

M
. This produces a set of discrete grid points pxi, tjq defined by:

xi “ xL ` ih, i “ 0, 1, . . . , N

tj “ j∆t, j “ 0, 1, . . . ,M.

Upwind and Downwind Scheme

We now derive the upwind scheme for a ą 0 and a ă 0. We approximate the time derivative
ut with the first-order forward difference (1stFD) which yields explicit method. For the spatial
derivative ux, we could either approximate it by forward or backward differencing in space:

1. For a ą 0, the upwind scheme is obtained by approximating ux with the first-order
backward difference (1stBD) yields:

upxi, tj`1q ´ upxi, tjq

∆t
` a

ˆ

upxi, tjq ´ upxi´1, tjq

h

˙

´ τij “ 0, (5.3.3)
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where the local truncation error τij takes the form

τij “
∆t

2
uttpxi, ηjq `

ah

2
uxxpξi, tjq “ Op∆tq `Ophq. (5.3.4)

Denote the dimensionless quantity λ “
a∆t

h
which is known as the Courant number,

multiplying each side of (5.3.3) by ∆t and rearranging gives:

upxi, tj`1q “ upxi, tjq ´ λrupxi, tjq ´ upxi´1, tjqs ´∆tτij. (5.3.5)

Dropping τij and replacing uji « upxi, tjq in (5.3.5), we obtain:

uj`1
i “ p1´ λquji ` λu

j
i´1, (Upwind: a ą 0)

for i “ 1, 2, . . . , N and j “ 0, 1, . . . ,M´1, together with initial and boundary conditions:

u0
i “ gpxiq “ gi, i “ 0, 1, . . . , N

uj0 “ uLptjq, j “ 1, . . . ,M.

2. For a ă 0, the upwind scheme is obtained by approximating ux with the first-order
forward difference (1stFD) yields:

upxi, tj`1q ´ upxi, tjq

∆t
` a

ˆ

upxi`1, tjq ´ upxi, tjq

h

˙

` τij “ 0, (5.3.6)

where the local truncation error τij is the same as (5.3.4). Multiplying each side of (5.3.6)
by ∆t and rearranging gives:

upxi, tj`1q “ upxi, tjq ´ λrupxi`1, tjq ´ upxi, tjqs ´∆tτij. (5.3.7)

Dropping τij and replacing uji « upxi, tjq in (5.3.7), we obtain:

uj`1
i “ p1` λquji ´ λu

j
i`1, (Upwind: a ă 0)

for i “ 0, . . . , N´1 and j “ 0, 1, . . . ,M´1, together with initial and boundary conditions:

u0
i “ gpxiq “ gi, i “ 0, 1, . . . , N

ujN “ uRptjq, j “ 1, . . . ,M.

These two methods are first order accurate in both time and space. Moreover, they
inherent the asymmetry property of the advection equation, i.e. its solution profile translates
across time; this is evident by looking at the stencil of these two methods. The stencil also
tells us that the choice between these two methods should be dictated by the sign of a. These
schemes are called upwind schemes because they retain the important property that the infor-
mation propogates from left to right (right to left) for a ą 0 (a ă 0). The downwind scheme,
which is the opposite of upwind scheme, is obtained by forward (backward) differencing for
a ą 0 (a ă 0).
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uji´1

uj`1
i

uji

tj`1

tj
uji`1

uj`1
i

uji

Figure 5.8: Three-point stencil for the (Upwind: a ą 0) and (Upwind: a ă 0) scheme.

Stability via von Neumann Method

Substituting the ansatz uji “ wje
rxiI into (Upwind: a ą 0) yields:

uj`1
i “ p1´ λquji ` λu

j
i´1

wj`1e
rxiI “ p1´ λqwje

rxiI ` λwje
rxiIe´rhI .

Cancelling out the exponential term, we obtain:

wj`1 “ wj

”

1´ λ` λe´rhI
ı

“ Kwj,

and we require the amplication factor |K| ď 1, i.e.

|1´ λ` λe´irh|2 “
”

1´ λ` λ cosprhq
ı2

` λ2 sin2
prhq

“ p1´ λq2 ` 2λp1´ λq cosprhq ` λ2 cos2
prhq ` λ2 sin2

prhq

“ 1´ 2λ` λ2
` 2λp1´ λq

”

1´ 2 sin2
prh{2q

ı

` λ2

“ 1´ 2λ` 2λ2
` 2λp1´ λq ´ 4λp1´ λq sin2

prh{2q

“ 1´ 4λp1´ λq sin2
prh{2q ď 1

ùñ 0 ď 4λp1´ λq sin2
prh{2q.

This holds for any r provided λp1´ λq ě 0, i.e. 0 ď λ ď 1. For (Upwind: a ă 0),

uj`1
i “ p1` λquji ´ λu

j
i`1

wj`1e
rxiI “ p1` λqwje

rxiI ´ λwje
rxiIerhI

wj`1 “ wj

”

1` λ´ λerhI
ı

“ Kwj.

Expanding |K|2 yields:

|1` λ´ λerhI |2 “
”

1` λ´ λ cosprhq
ı2

` λ2 sin2
prhq

“ p1` λq2 ´ 2λp1` λq cosprhq ` λ2 cos2
prhq ` λ2 sin2

prhq

“ 1` 2λ` 2λ2
´ 2λp1` λq

”

1´ 2 sin2
prh{2q

ı

“ 1` 2λ` 2λ2
´ 2λp1` λq ` 4λp1` λq sin2

prh{2q

“ 1` 4λp1` λq sin2
prh{2q ď 1

ùñ 0 ď ´4λp1` λq sin2
prh{2q.

This holds for any r provided λp1` λq ď 0, i.e. ´1 ď λ ď 0.
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5.3.3 The Courant-Friedrichs-Lewy (CFL) Condition

The CFL condition is a necessary condition for convergence of finite difference methods, typ-
ically time-explicit methods for hyperbolic problems. Roughly speaking, it states that a nec-
essary condition for convergence is that the numerical method must be able to access the
information required such as initial data to form the correct solution. Otherwise, we can
change such data and hence change the true solution without having any effect on the nu-
merical solution, so the method cannot be convergent for general initial data. To make this
rigorous, we introduce the concept of domain of dependence which is especially important
in the study of hyperbolic system.

Definition 5.3.3. For wave problems, the continuous domain of dependence for the so-
lution at px̄, t̄q consists of all the points on the x-axis (t “ 0) that contributes to the solution
at px̄, t̄q. For the advection equation, the domain of dependence for px̄, t̄q is the single point
px̄´ at̄, 0q. Consequently, the solution at px̄, t̄q changes if and only if gpx̄´ at̄q changes.

Definition 5.3.4. On a particular fixed grid, we define the numerical domain of depen-
dence of a discrete grid point pxi, tjq to be the set of grid points at the initial time t0 such
that their corresponding data contributes to the solution uji .

Consider the (Upwind: a ą 0) scheme. The value uji depends on uj´1
i´1 and uj´1

i , which in

turn depends on uj´2
i´2 to uj´2

i . Tracing back to the initial time t0 “ 0, we obtain a right tri-

angular array of grid points and we see that uji depends on the initial data at the grid points
txi´j, xi´j`1, . . . , xiu. A similar argument shows that the domain of dependence of uji for the

(Upwind: a ă 0) scheme is the set of grid points txi, xi`1, . . . , xi`ju. Keeping the ratio
∆t

h
fixed, as we refine the grid, we see that the value uji for the (Upwind: a ą 0) scheme depends
on more values of the initial data, but these values all lie within the same interval rxi´j, xis.
Moreover, the numerical domain of dependence will fill in the interval rxi´j, xjs in the limit as
the time step ∆t and spatial width h go to zero.

Recall that we want the numerical solution uji converges to the true solution upxi, tjq as the
mesh width goes to 0. This gives rise to the CFL condition:

A numerical method can be convergent only if its numerical

domain of dependence contains the true domain of dependence

of the PDE, at least in the limit as h and ∆t go to zero.

Remark 5.3.5. We stress again that in general the CFL condition is only a necessary condition
for convergence of finite difference methods for hyperbolic PDEs. In addition to this and
the consistency requirement, a proper stability analysis is required to determine the stability
restriction on ∆t and h.

Referring to Figure 5.9, for the (Upwind: a ą 0) scheme the CFL condition requires that
xi´j ď xi ´ atj, i.e.

xi ´ jh ď xi ´ aj∆t
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xi´4 xi´3 xi´2 xi´1 xi

t4

t0 xi xi`1 xi`2 xi`3 xi`4

Figure 5.9: Numerical domain of dependence of pxi, t4q for the (Upwind: a ą 0) and
(Upwind: a ă 0) scheme.

´h ď ´a∆t

0 ď
a∆t

h
ď 1,

while for the (Upwind: a ă 0) scheme:

xi ´ atj ď xi`j

xi ´ aj∆t ď xi ` jh

´a∆t ď h

´1 ď
a∆t

h
ď 0.

Observe that for the (Upwind: a ą 0) ((Upwind: a ă 0)) scheme, the positive-definiteness
(negative-definiteness) of λ comes from the physical intuition that the method should be used
to solve (5.3.1) when a ą 0 (a ă 0).

5.3.4 Lax-Friedrichs Method

Another time-explicit method can be obtained by approximating the spatial derivative ux with
the first-order centred difference (1stCD). Dropping the local truncation error and replacing
uji « upxi, tjq yields

uj`1
i “ uji ´

λ

2

`

uji`1 ´ u
j
i´1

˘

.

Performing a von Neumann stability analysis shows that this method is not useful. Indeed,
after cancelling the common factor we obtain:

wj`1 “ wj

ˆ

1´
λ

2
rerhI ´ e´rhIs

˙

“ wj

”

1´ Iλ sinprhq
ı

,

and the magnitude of the amplication factor satisfies:

|K|2 “ 1` λ2 sin2
prhq ě 1.
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By replacing uji with the average of its nearest neighbour, we obtain the Lax-Friedrichs
method:

uj`1
i “

1

2

`

uji´1 ` u
j
i`1

˘

´
λ

2

`

uji`1 ´ u
j
i´1

˘

(Lax-Friedrichs)

Let us examine the consistency condition, if any. By replacing uji with the true solution upxi, tjq
in (Lax-Friedrichs), we obtain

τij “
upxi, tj`1q ´

1
2
rupxi´1, tjq ` upxi`1, tjqs

∆t
` a

„

upxi`1, tjq ´ upxi´1, tjq

2h



“
upxi, tj`1q ´ upxi, tjq

∆t
loooooooooooomoooooooooooon

«ut

`a

„

upxi`1, tjq ´ upxi´1, tjq

2h



looooooooooooooomooooooooooooooon

«ux

´
1

2∆t

”

upxi´1, tjq ` upxi`1, tjq ´ 2upxi, tjq
ı

looooooooooooooooooooooomooooooooooooooooooooooon

h2uxx

It follows from difference formulas (1stFD) for the first term, (1stCD) for the second term and
(2ndCD) for the third term that:

τij “ utpxi, tjq `Op∆tq ` a
”

uxpxi, tjq `Oph2
q

ı

´
h2

2∆t

”

uxxpxi, tjq `Oph2
q

ı

“ Op∆tq `Ophq `O
ˆ

h2

∆t

˙

.

For the scheme to be consistent, we require that
h2

∆t
ÝÑ 0 as ∆t, h ÝÑ 0, which suggest

choosing the time step ∆t “ Ophq as ∆t, h ÝÑ 0. We see that the Lax-Friedrichs method is
first order accurate in both time and space.

uji´1 uji`1

uj`1
i

tj`1

tj

Figure 5.10: Three-point stencil for the Lax-Friedrichs method.

We now turn from consistency to stability. From von Neumann stability analysis,

wj`1e
rxiI “

wj
2

`

erxiIe´rhI ` erxiIerhI
˘

´
λwj

2

`

erxiIerhI ´ erxiIe´rhI
˘

.

Cancelling out exponential term, we obtain:

wj`1 “
wj
2

`

e´rhI ` erhI ´ λperhI ´ e´rhIq
˘
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“ wj

”

cosprhq ´ Iλ sinprhq
ı

.

Expanding the amplication factor yields:

|K|2 “ cos2
prhq ` λ2 sin2

prhq “ 1` pλ2
´ 1q sin2

prhq,

and this is bounded by 1 for all r only if λ2 ´ 1 ď 0, i.e. |λ| ď 1.

5.3.5 Lax-Wendroff Method

So far all the methods we discussed are first-order. One possible way to achieve second-order
accuracy is to use a second-order finite difference for the time discretisation. For various
reasons, it is much more convenient to use a two-level methods for PDEs whenever possible–
in more than one dimension the need to store several levels of data may be restrictive and
boundary conditions can be harder to impose, to name a few reasons. We guess an ansatz of
the form

uj`1
i “ Auji`1 `Bu

j
i ` Cu

j
i´1. (5.3.8)

The idea is to use Taylor expansions directly on the advection equation ut ` aux “ 0, replac-
ing the time derivatives arising in the Taylor series expansion with spatial derivatives, using
expressions obtained by differentiating the given PDE.

Expanding upxi, tj`1q around tj gives:

upxi, tj`1q “ upxi, tjq `∆tutpxi, tjq `
∆t2

2
uttpxi, tjq `

∆t3

6
utttpxi, tjq `Op∆t4q. (5.3.9)

Assuming u has sufficient regularity, since ut “ ´aux, we have that:

utt “ ´auxt “ ´autx “ ´ap´auxxq “ a2uxx

uttt “ a2uxxt “ a2utxx “ a2
p´auxxxq “ ´a

3uxxx,

and substituting this into (5.3.9) yields:

upxi, tj`1q “ upxi, tjq´a∆tuxpxi, tjq`
a2∆t2

2
uxxpxi, tjq´

a3∆t3

6
uxxxpxi, tjq`Op∆t4q. (5.3.10)

Next, expanding upxi˘1, tjq around xi gives:

upxi˘1, tjq “ upxi, tjq ˘ huxpxi, tjq `
h2

2
uxxpxi, tjq ˘

h3

6
uxxxpxi, tjq `Oph4

q. (5.3.11)

Substituting (5.3.10) and (5.3.11) into (5.3.8) yields:

upxi, tjq ´ a∆tuxpxi, tjq `
a2∆t2

2
uxxpxi, tjq ´

a3∆t3

6
uxxxpxi, tjq

“ A
”

upxi, tjq ` huxpxi, tjq `
h2

2
uxxpxi, tjq `

h3

6
uxxxpxi, tjq

ı

`Bupxi, tjq `Op∆t4q ` pA` CqOph4
q
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` C
”

upxi, tjq ´ huxpxi, tjq `
h2

2
uxxpxi, tjq ´

h3

6
uxxxpxi, tjq

ı

Equating coefficients of upxi, tjq, uxpxi, tjq and uxxpxi, tjq, we obtain the following system of
linear equations:

A`B ` C “ 1

A´ C “ ´λ

A` C “ λ2,

which has solution

A “
λ2 ´ λ

2
, C “

λ2 ` λ

2
, B “ 1´ λ2.

This yields the Lax-Wendroff method:

uj`1
i “

ˆ

λ2 ´ λ

2

˙

uji`1 ` p1´ λ
2
quji `

ˆ

λ2 ` λ

2

˙

uji´1 (Lax-Wendroff)

“ uji ´
λ

2

`

uji`1 ´ u
j
i´1

˘

`
λ2

2

`

uji`1 ´ 2uji ` u
j
i´1

˘

The local truncation error is

τij “
upxi, tj`1q ´

”

Aupxi`1, tjq `Bupxi, tjq ` Cupxi´1, tjq
ı

∆t

“
´a3∆t2

6
uxxxpxi, tjq ´

pA´ Cqh3

6
uxxxpxi, tjq `Op∆t3q ´ pA` CqO

ˆ

h4

∆t

˙

“
´a3∆t2

6
uxxxpxi, tjq `

λh3

6∆t
uxxxpxi, tjq `Op∆t3q `Op∆th2

q

“ Op∆t2q `Oph2
q.

Note that division by ∆t is because we want to recover the time derivative ut. The local
truncation error can also be obtained directly. Using utt “ a2uxx and uttt “ ´a

3uxxx, we have:

τij “
upxi, tj`1q ´ upxi, tjq

∆t
`

λ

2∆t
pupxi`1, tjq ´ upxi´1, tjqq

´
λ2

2∆t
pupxi`1, jq ´ 2upxi, tjq ` upxi´1, tjqq

“
upxi, tj`1q ´ upxi, tjq

∆t
` a

ˆ

upxi`1, tjq ´ upxi´1, tjq

2h

˙

´
a2∆t

2

ˆ

upxi`1, jq ´ 2upxi, tjq ` upxi´1, tjq

h2

˙

“ utpxi, tjq `
∆t

2
uttpxi, tjq `

∆t2

6
utttpxi, tjq `Op∆t3q

` a

ˆ

uxpxi, tjq `
h2

6
uxxxpxi, tjq `Oph3

q

˙

´
a2∆t

2

`

uxxpxi, tjq `Oph2
q
˘

“
a2∆t

2
uxxpxi, tjq ´

a3∆t2

6
uxxxpxi, tjq `Op∆t3q
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`
ah2

6
uxxxpxi, tjq `Oph3

q ´
a2∆t

2
uxxpxi, tjq `Op∆th2

q

“ Op∆t2q `Oph2
q.

We now investigate stability of the scheme using the von Neumann stability analysis. The
amplification factor for the (Lax-Wendroff) method is

K “

ˆ

λ2 ´ λ

2
erhI

˙

` p1´ λ2
q `

ˆ

λ2 ` λ

2
e´rhI

˙

“ 1´ λ2
` λ2 cosprhq ´ Iλ sinprhq

“ 1` λ2
”

cosprhq ´ 1
ı

´ Iλ sinprhq

“ 1´ 2λ2 sin2
prh{2q ´ 2λI sinprh{2q cosprh{2q,

and computing |K|2 yields:

|K|2 “
”

1´ 2λ2 sin2
prh{2q

ı2

` 4λ2 sin2
prh{2q cos2

prh{2q

“ 1´ 4λ2 sin2
prh{2q ` 4λ4 sin4

prh{2q ` 4λ2 sin2
prh{2q cos2

prh{2q

“ 1´ 4λ2 sin2
prh{2qp1´ cos2

prh{2qq ` 4λ4 sin4
prh{2q

“ 1´ 4λ2 sin4
prh{2q ` 4λ4 sin4

prh{2q

“ 1´ 4λ2
p1´ λ2

q sin4
prh{2q.

We see that |K|2 ď 1 for all r as long as 1´ λ2 ě 0, i.e. |λ| ď 1.

5.4 Elliptic Equation

5.4.1 1D Poisson Equation

Consider the one-dimensional Poisson equation (inhomogeneous Laplace’s equation) with Dirich-
let boundary condition:

#

u2pxq “ fpxq, 0 ă x ă 1,

up0q “ α, up1q “ β.
(Poisson)

This problem is called a 2-point boundary value problem (BVP) since boundary condi-
tions are specified at two distinct points. For sufficiently nice fpxq, the (Poisson) problem can
be solved explicitly but studying finite-difference methods for this simple problem will reveal
some of the essential features of all such analysis, particularly the relation of the global error
to the local truncation error and the use of stability in making this connection.

Subdividing the interval r0, 1s uniformly into m ` 2 subintervals gives the set of discrete

grid points pxjq
m`1
j“0 defined by xj “ jh, where h “

1

m` 1
is the mesh size. At each discrete

point xj, replacing u2pxq with a second-order central difference (2ndCD) gives:

upxj`1q ´ 2upxjq ` upxj´1q

h2
“ fpxjq `

h2

12
up4qpxjq `Oph4

q
looooooooooomooooooooooon

local truncation error

,
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Dropping τj and denoting uj « upxjq, fj « fpxjq as the numerical approximation at xj, we
obtain the three-point stencil scheme:

uj`1 ´ 2uj ` uj´1

h2
“ fj, j “ 1, . . . ,m, (5.4.1)

with boundary conditions u0 “ α, um`1 “ β. Define the following vectors:

U “

»

—

—

—

—

—

–

u1

u2

...

uM

fi

ffi

ffi

ffi

ffi

ffi

fl

, F “

»

—

—

—

—

—

–

f1

f2

...

fM

fi

ffi

ffi

ffi

ffi

ffi

fl

´
1

h2

»

—

—

—

—

—

—

—

—

–

α

0
...

0

β

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where we incorporate the boundary conditions into the vector F . We can then rewrite (5.4.1)
as the matrix system AhU “ F , where Ah P Rmˆm is the symmetric tridiagonal matrix:

Ah “
1

h2

»

—

—

—

—

—

—

—

—

–

´2 1

1
. . . . . .

. . . . . . . . .

. . . . . . 1

1 ´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

5.4.2 Stability, Consistency and Convergence

We already knew that the local truncation error τj of the scheme (5.4.1) is of Oph2q from the
derivation. In general, if we were given a finite-difference method, the local truncation error is
obtained by replacing uj with the true solution upxjq in the scheme. As an illustration, from
(5.4.1), using (2ndCD) we obtain:

τj “
upxj`1q ´ 2upxjq ` upxj´1q

h2
´ fpxjq “ u2pxjq `

h2

12
up4qpxjq `Oph4

q ´ fpxjq

“ Oph2
q as h ÝÑ 0.

If we define τh “ pτjq P Rm and Uexact P Rm is the vector of true solution at grid points, then

τh “ AhUexact ´ F ùñ AhUexact “ τh ` F.

To analyse the global error Eh “ pEjq “ U ´ Uexact P Rm, subtracting AhUexact “ F ` τh

from AhU “ F gives
AhEh

“ ´τh, (5.4.2)
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which corresponds to the system of equations:

Ej`1 ´ 2Ej ` Ej´1

h2
“ ´τj, j “ 1, . . . ,m,

with boundary conditions E0 “ Em`1 “ 0. From Theorem 5.1.3, the tridiagonal matrix Ah is
invertible since it is strictly diagonally dominant. Solving (5.4.2) for Eh gives:

Eh
“ ´pAhq´1τh,

and taking norms gives:

}Eh
} ď }pAhq´1

}}τh}.

We see that the global error will have roughly the same magnitude as the local truncation error
if we impose the following condition: there exists a constant C ą 0 independent of h such that:

}pAhq´1
} ď C for all h sufficiently small.

This leads to

}Eh
} ď C}τh},

and so }Eh} goes to zero at least as fast as }τh} as h ÝÑ 0. This motivates the following
definition of stability for linear BVPs:

Definition 5.4.1. Suppose a finite-difference method for a linear BVP gives a sequence of
matrix equations of the form AhUh “ F h, where h is the mesh width. We say that the method
is stable if:

1. pAhq´1 exists for all h sufficiently small, say 0 ă h ă h0,

2. there exists a constant C ą 0, independent of h, such that

}pAhq´1
} ď C for all h ă h0.

Definition 5.4.2. We say that a finite-difference method is consistent with the given BVP
if

}τh} ÝÑ 0 as h ÝÑ 0.

We say that a finite-difference method is convergent if }Eh} ÝÑ 0 as h ÝÑ 0.

Theorem 5.4.3. If a finite-difference method is consistent and stable, then it is convergent.

Proof. Using the definition of stability and consistency in order, we obtain:

}Eh
} ď }pAhq´1

}}τh} ď C}τh} ÝÑ 0 as h ÝÑ 0.

�
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The above analysis leads to the following conclusion:

Ophpq local truncation error ` stablity ùñ Ophpq global error.

Consistency is usually easy to verify, but the difficulty lies in showing stability since the ma-
trix Ah grows in size as the mesh width h ÝÑ 0. Note that for other classes of problems, it
may not even be clear how to define stability in an appropriate way that allows one to prove
convergence using Theorem 5.4.3. Nonetheless, this forms the basic of proving convergence
of finite-difference methods: first compute the local truncation error of the method and then
use some form of stability to show that the global error can be bounded in terms of the local
truncation error.

5.4.3 Stability in } ¨ }2

For the (Poisson) problem, the main goal now is to obtain a bound for }pAhq´1} that is inde-
pendent of the mesh-width h. Clearly, this depends strongly on the choice of norms, usually
dictated by what order of accuracy we want for the given method.

The fact that the matrix Ah is symmetric (and so is pAhq´1) suggest the choice of the matrix
2-norm, because then

}pAhq´1
}2 “ ρppAhq´1

q “ max
1ďpďm

|λ´1
p | “

ˆ

min
1ďpďm

|λp|

˙´1

,

where tλ1, . . . , λmu are eigenvalues of Ah. From Theorem 5.1.2 with

a “ ´
2

h2
, b “

1

h2
,

the eigenvalues of Ah are:

λp “ ´
2

h2
`

2

h2
cosppπhq “

2

h2

´

cosppπhq ´ 1
¯

, p “ 1, . . . ,m,

with its corresponding eigenvectors uppq “ pu
ppq
j q:

u
ppq
j “ sinppπjhq, j “ 1, . . . ,m.

The matrix Ah is negative definite since all its eigenvalues λp ă 0. The smallest eigenvalue of
Ah in magnitude is

λ1 “
2

h2

´

cospπhq ´ 1
¯

“
2

h2

´

´
π2h2

2
`
π4h4

4!
`Oph6

q

¯

“ ´π2
`Oph2

q as h ÝÑ 0.

This shows that |λ1| « π2 for sufficiently small h ą 0 and it is bounded away from 0 as h ÝÑ 0,
indicating that the method (5.4.1) is stable in the 2-norm. Moreover, we obtain the global error
bound:

}Eh
}2 ď }pA

h
q
´1
}2}τ

h
}2 «

1

π2
}τh}2 “ Oph2

q as h ÝÑ 0.
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We also have the following approximation for the local truncation error:

}τh}2 «
h2

12
}up4q}2 “

h2

12
}f2}2,

where }f2}2 is the discrete-grid-norm of f2 evaluated at tx1, . . . , xmu.

Remark 5.4.4. The eigenvalues for one-dimensional Laplacian is µp “ ´p2π2, p “ 1, 2, . . .,
with corresponding eigenvector up “ sinppπxq; p is known as the wave number. The eigenvec-
tors of Ah are simply the first m eigenvectors of the Laplacian evaluated at the discrete grid
points xj “ jh, j “ 1, . . . ,m. For a fixed p, λp « µp for sufficiently small h ą 0, since

λp “
2

h2

´

cosppπhq ´ 1
¯

“
2

h2

´

´
p2π2h2

2
`
p4π4h4

4!
`Oph6

q

¯

“ ´p2π2
`Oph2

q as h ÝÑ 0.

In the limit as h ÝÑ 0, we recover the eigenvalues for the continuous Laplacian operator.

Since all norms are equivalent in finite-dimensional vector space, one might think that we
recover the full error estimate up to a multiplicative constant; this is false because the constant
of equivalence actually depends on the mesh width h. For the 8-norm,

h|Ej| ď h|Ej|
2
ď h

m
ÿ

j“1

|Ej|
2
“ }Eh

}
2
2,

and taking the supremum over all j “ 1, . . . ,m yields:

}Eh
}8 ď

1
?
h
}Eh

}2 “ Oph3{2
q as h ÝÑ 0,

This does not show the second order accuracy that we would like to have. Nonetheless, by
explicitly calculating the inverse of Ah and then showing that }pAhq´1}8 “ Op1q using the idea
of Green’s function, we obtain the same error estimate in the 8-norm:

}E}8 ď }pA
h
q
´1
}8}τ}8 “ Oph2

q,

since }τh}8 “ Oph2q.

5.4.4 2D Extension of Poisson Equation

Consider the Poisson equation uxx ` uyy “ f on the unit square D, with Dirichlet boundary
condition u|BD “ uD. We discretise the square uniformly, with grid nodes pxi, yjq defined by

xi “ i∆x, yj “ j∆y.

Let ui,j, fij represent the finite-difference approximation of upxi, yjq, fpxi, yjq respectively. Us-
ing the second-order central difference (2ndCD) for both uxx and uyy and dropping the local
truncation error gives the following:

ui`1,j ´ 2uij ` ui`1,j

p∆xq2
`
ui,j`1 ´ 2uij ` ui,j´1

p∆yq2
“ fij.
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px0, y0q
x1 x2 x3 x4 x5 x6 x7

y1

y2

y3

y4

y5

y6

y7

x

y

Figure 5.11: An example of a square mesh grid with m “ 6. The black dots are the boundary
data. The red dots are the five-point stencil for the Laplacian about the point px4, y4q.

Assuming ∆x “ ∆y “ h “ 1
m`1

, we obtain the five-point stencil scheme:

ui`1,j ` ui´1,j ` ui,j`1 ` ui,j´1 ´ 4uij
h2

“ fij, i, j “ 1, . . . ,m, (5.4.3)

with boundary conditions:

ui,0 “ uDpxi, 0q, i “ 1, 2, . . . ,m

ui,m`1 “ uDpxi, 1q, i “ 1, 2, . . . ,m

u0,j “ uDp0, yjq, j “ 1, 2, . . . ,m

um`1,j “ uDp1, yjq, j “ 1, 2, . . . ,m.

Observe that the five-point stencil scheme (5.4.3) is a system of m2 linear equations with m2

variables, and we can rewrite this as a matrix system AhU “ F , where the matrix Ah P Rm2ˆm2

is now very sparse, i.e. most of the elements are 0. There exists different orderings for the
grid points, but all such matrices are equivalent up to permutations. In constrast to the one-
dimensional problem, there exists more choices in terms of ordering the grid points. Although
all such matrices are equivalent up to permutations, a clever choice of ordering will have a
significant impact when it comes to numerically solving the matrix system. Unfortunately, in
two-dimensions the structure of the matrix is not as compact as in one-dimension, in that the
nonzeros cannot be as nicely clustered near the main diagonal.

A natural choice is the rowwise ordering, where we take the unknowns along the bottom
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row, followed by unknowns in the second row, and so on. As such, define the following vectors:

U “

»

—

—

—

—

—

–

up1q

up2q

...

upmq

fi

ffi

ffi

ffi

ffi

ffi

fl

, F “

»

—

—

—

—

—

–

f p1q

f p2q

...

f pmq

fi

ffi

ffi

ffi

ffi

ffi

fl

´
1

h2

»

—

—

—

—

—

—

—

—

–

sidep1q ` bottom

sidep2q

...

sidepm´1q

sidepmq ` top

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where

upjq “

»

—

—

—

—

—

–

u1,j

u2,j

...

um,j

fi

ffi

ffi

ffi

ffi

ffi

fl

, f pjq “

»

—

—

—

—

—

–

f1j

f2j

...

fmj

fi

ffi

ffi

ffi

ffi

ffi

fl

, j “ 1, 2, . . . ,m,

and

bottom “

»

—

—

—

—

—

–

u1,0

u2,0

...

um,0

fi

ffi

ffi

ffi

ffi

ffi

fl

, top “

»

—

—

—

—

—

–

u1,m`1

u2,m`1

...

um,m`1

fi

ffi

ffi

ffi

ffi

ffi

fl

, sidepjq “

»

—

—

—

—

—

—

—

—

–

u0,j

0
...

0

um`1,j

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rm, j “ 1, 2, . . . ,m.

The corresponding matrix Ah P Rm2ˆm2
of the scheme (5.4.3) has the form:

Ah “
1

h2

»

—

—

—

—

—

—

—

—

–

T Im

Im
. . . . . .

. . . . . . . . .

. . . . . . Im

Im T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where T P Rmˆm is the symmetric tridiagonal matrix:

T “

»

—

—

—

—

—

—

—

—

–

´4 1

1
. . . . . .

. . . . . . . . .

. . . . . . 1

1 ´4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Remark 5.4.5.
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5.4.5 Accuracy and Stability in 2D

The local truncation error τij is obtained by replacing ui,j with the true solution upxi, yjq in
the scheme (5.4.3):

τij “
1

h2

´

upxi´1, yjq ` upxi`1, yjq ` upxi, yj´1q ` upxi, yj`1q ´ 4upxi, yjq
¯

´ fpxi, yjq

“ uxxpxi, yjq ` uyypxi, yjq `
h2

12

´

uxxxxpxi, yjq ` uyyyypxi, yjq
¯

`Oph4
q ´ fpxi, yjq

“ Oph2
q as h ÝÑ 0.

This is just a consequence of the one-dimensional local truncation error on both x and y di-
rection. Define Eij “ uij ´ upxi, yjq. The error equation is AhEh “ ´τh, and the method will
be globally second order accurate provided it is stable in some chosen norm, i.e. there exists
a constant C ą 0, independent of h as h ÝÑ 0 such that }pAhq´1} ď C.

For rowwise ordering, we show that pAhq´1 is uniformly bounded in the 2-norm as h ÝÑ 0.
The eigenvalues of Ah are:

λpq “
2

h2

”´

cosppπhq ´ 1
¯

`

´

cospqπhq ´ 1
¯ı

,

with corresponding eigenvectors uppqq “
´

u
ppqq
i,j

¯

P Rm2
:

upqij “ sinppπihq sinpqπjhq, i, j “ 1, 2, . . . ,m,

where the parameter p, q “ 1, 2, . . . ,m are the wave numbers in the x, y direction respectively.
The matrixAh is again negative definite since all its eigenvalues λpq ă 0. The smallest eigenvalue
of Ah in magnitude is

λ11 “
4

h2

´

cospπhq ´ 1
¯

“
2

h2

ˆ

´
pi2h2

2
`
π4h4

4!
`Oph6

q

˙

“ ´2π2
`Oph2

q as h ÝÑ 0.

Consequently,

}pAhq´1
}2 «

1

2π2
as h ÝÑ 0,

and the global error satisfies }Eh}2 “ Oph2q as h ÝÑ 0. Since

}Ah}2 “ ρpAhq “ |λmm| “
4

h2

„

1´ cos

ˆ

mπ

m` 1

˙

«
8

h2
,

the condition number of Ah with respect to the 2-norm is:

κ2pA
h
q “ }Ah}2}pA

h
q
´1
}2 «

ˆ

8

h2

˙ˆ

1

2π2

˙

“
4

π2h2
“ O

ˆ

1

h2

˙

as h ÝÑ 0.

This means that the matrix becomes very ill-conditioned as the mesh width h gets smaller.
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5.4.6 Variational Formulation

We end the section with some theoretical approach of solving elliptic PDEs. We will study the
variational approach which play a prominent role in elliptic PDEs over the last few decades.
It is based on the notion of weak solutions, which proved to be one of the most elegant yet
powerful concept in the field of PDEs.

Consider the one-dimensional Poisson equation with homogeneous Dirichlet boundary con-
ditions:

#

´u2 “ fpxq, 0 ă x ă 1,

up0q “ up1q “ 0.
(Dirichlet)

Consider the linear space:

V “
!

v P Cr0, 1s : v1 is bounded, piecewise continuous on r0, 1s and vp0q “ vp1q “ 0
)

.

Consider the linear functional F : V ÝÑ R defined by

F pvq “
1

2
xv1, v1y ´ xf, vy,

where x¨, ¨y is the standard L2-inner product on r0, 1s:

xf, gy “

ż 1

0

fpxqgpxq dx.

Define the following two problems:

Find u P V such that F puq ď F pvq for all v P V . (Min)

Find u P V such that xu1, v1y “ xf, vy. (Var)

Theorem 5.4.6. If u is a solution to the (Dirichlet) problem, then u is also a solution to the
problem (Var).

Proof. Integrating the Poisson equation in (Dirichlet) against a test function v P V over r0, 1s:

xf, vy “

ż 1

0

fv dx “ ´

ż 1

0

u2v dx

“ ´

”

u1v
ı

ˇ

ˇ

ˇ

ˇ

1

0

`

ż 1

0

u1v1 dx

“

ż 1

0

u1v1 dx “ xu1, v1y,

where the boundary term vanishes due to vp0q “ vp1q “ 0.
�

Theorem 5.4.7. The variational problem (Var) is equivalent to the minimisation problem
(Min).
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Proof. Assume u is a solution to the variational problem (Var). We need to show that F puq ď
F pvq for all v P V . Decomposing v “ u` w, where w P V , then

F pvq “ F pu` wq “
1

2
xu1 ` w1, u1 ` w1y ´ xf, u` wy

“

ˆ

1

2
xu1, u1y ´ xf, uy

˙

`

”

xu1, w1y ´ xf, wy
ı

`
1

2
xw1, w1y

“ F puq `
1

2
xw1, w1y

ě F puq,

where the second term vanishes since u is a solution to the variational problem (Var) by as-
sumption. Hence, F puq ď F pvq for all v P V .

Conversely, suppose u is a solution to the minimisation problem (Min). For any v P V and
ε ą 0, we have u`εv P V and so F puq ď F pu`εvq. Treating gpεq :“ F pu`εvq as a function of
ε, we deduce that gpεq has a minimum at ε “ 0 for any v P V . We now compute the Gâteaux
derivative of F p¨q. Expanding gpεq gives:

gpεq “ F pu` εvq “
1

2
xu1 ` εv1, u1 ` εv1y ´ xf, u` εvy

“
1

2
xu1, u1y ` εxu1, v1y `

ε2

2
xv1, v1y ´ xf, uy ´ εxf, vy

ùñ g1pεq “ xu1, v1y ` εxv1, v1y ´ xf, vy

The desired conclusion follows from g1pεq
ˇ

ˇ

ˇ

ε“0
“ 0.

�

Theorem 5.4.8. The solution to the variational problem (Var) is unique.

Proof. Suppose u1, u2 P V are any two solutions of the variational problem (Var). For all v P V ,
u1, u2 satisfy the following equation:

xu11, v
1
y “ xf, vy

xu12, v
1
y “ xf, vy

Subtracting both equations then gives us:

xu11 ´ u
1
2, v

1
y “ 0.

We choose the particular v1 “ u11 ´ u
1
2 P V , then:

xu11 ´ u
1
2, u

1
1 ´ u

1
2y “ 0 ùñ u11 ´ u

1
2 “ 0 ùñ u1 ´ u2 ” 0.

�

Summarising everything, we have the following relation:

(Dirichlet) ùñ (Var) ðñ (Min).
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Is it possible to show that (Var) ùñ (Dirichlet)? Assume u P C2r0, 1s and f P Cr0, 1s,
integrating by parts gives

ż 1

0

u2v dx`

ż 1

0

fv dx “ 0 for all v P V,

where again the boundary term vanishes since vp0q “ vp1q “ 0. After some justification, we
arrive at

u2 ` f “ 0 for all x P p0, 1q.
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