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Chapter 1

Solvers For Nonlinear Equations

Root-finding problems are one of the most fundamental problem in Applied Mathematics, due
to the fact that almost any problems can be rephrase as solving the equation f(z) = 0. In
general, explicit solutions are not possible and one must be contented with being able to numer-
ically compute a root to any specified degree of accuracy. In this chapter, we will study three
classical root-finding algorithms belonging to the more general class of iterative methods;
the central idea is one chooses an initial guess to initiate the algorithm, which then generates
sequence of successive approximations to a solution. Let us first define the convergence and
rate of convergence for iterative methods:

Definition 1.0.1 ([Atk08]). Given an iterative method, a sequence of iteratives (x,)%_, is said
to converge with order p > 1 to a point « if there exists a constant C' > 0 such that

o — 2py1] < Cla— x,[P for all n > 0. (1.0.1)

If p = 1, the iterative method is said to have linear convergence; if p = 2, the iterative method
is said to have quadratic convergence.

Remark 1.0.2. This definition of order of convergence is inconvenient for some linearly con-
vergent iterative methods. Indeed, iterating the inequality (1.0.1) with p = 1 yields

la — 2,] < C"|av — x| for all n = 0. (1.0.2)

Observe that (1.0.2) is a weaker condition compare to (1.0.1) and can be shown directly in some
cases. If this were true, the iterative method will still be said to converge linearly provided
(1.0.2) holds for C' < 1.



8 1.1. Bisection Method

1.1 Bisection Method

Assume that f € Cla,b] such that f(a)f(b) < 0. From the Intermediate Value Theorem,
it follows that there exists at least one root « € [a,b]. The idea is to repeatedly halved the
interval [a, b] and then selects a subinterval containing «, until we reach the desired accuracy.
Below we present a pseudocode for the bisection method:

Bisection Method: Bisect(f, a, b, root, ¢)
1. Define ¢; == (a + b)/2.

2. If either |b—¢1| < € or |a — ¢1] < ¢, set root:= ¢; and exit. Otherwise, check the sign

of f(c1).

3. If f(a)f(c1) < 0, then set b := ¢; and return to Step 1. Otherwise, set a := ¢; and
return to Step 1.

On completion of the algorithm, ¢, will be an approximation to the root with |o — ¢, | < €
due to Step 2. Moreover, the interval [a,b] is halved in size after every successive iteration.
This leads to the following upper bound:

1 n
o —¢,] < (—) (b—a) and lim ¢, = a. (1.1.1)
2 n—0o0
From Remark (1.0.2), we say that the bisection method converges linearly with a rate of
C = 1/2. Note that the actual error may not decrease by a factor of 1/2 at each iteration, but
the average rate of decrease is 1/2. (1.1.1) tells us how many iterations are needed to achieve
a given accuracy € > 0. Indeed,
b—a In(b —a) — In(e)

<e <= n=

2n In(2)

Bisection method is guaranteed to converge provided f € C°a,b] and a,b € R are such that
f(a)f(b) < 0. Moreover, we obtain a robust error estimate (1.1.1) and the rate of convergence
C' = 1/2 is independent of initial guesses a,b. The downside is that it converges very slowly
comparing to Newton’s method and secant method, as we shall see in Section 1.2 and Section
1.3. In practice, the bisection method is often used to obtain a “good” initial guess for rapidly
convergent methods.

1.2 Newton’s Method

Albeit some difficulties and limitations, Newton’s method is an extremely powerful root-finding
algorithm since it converges quadratically in general. Applications of Newton’s method include
optimisation problems and solving nonlinear equations. In what follows, we first derive New-
ton’s method both geometrically and algebraically. We then prove a convergence theorem of
Newton’s method and discuss its limitations. Lastly, we provide a pseudocode for the method.
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Figure 1.1: Newton’s method with f(z) = 2 — 1 and xy = 3. We obtain zy = B 1.13.

Consider an initial guess xy of the desired root « of f(x) = 0, which we may assumed to
be sufficiently close to @. The main idea is to represent f(z) in a neighbourhood of xy with its
linear approximation, 7.e.

f(@) ~ f(xo) + f'(wo) (2 — o).
We then use the root of this tangent line, denoted by z1, to approximate «. Since the equation
of the tangent line is y — f(zo) = f'(z0)(x — x0), we obtain:

/(o)
f'(zo)’
This procedure can be repeated and provided f’(x,) # 0 for each n = 0, we obtain the recursive
relation for x,,:

if f'(20) # 0.

—f(z0) = f'(w0) (21 — 20) = 71 =20 —

Tn+1 = Tp — f’(.T )7
n

n = 0. (Newton’s method)

Alternatively, one can derive (1.2.1) using a Taylor series approach. More precisely, assume
f € C? in some neighbourhood of a. Expanding f(x) about the point z,, yields

f"(&n)
2!

(x —x,)%, for some &, between x and z,,.

f(@) = f(zn) + f(@n)(x — 2,) +

Setting * = o and using f(«) = 0 gives

0= flan) + flan)(a—a0) + 2 ”(inn) (o — ,)?
N SR €2 I W A ) I
( n f’(CCn)> gf,(xn>( n)J> (1.2.1)

where &, is now between « and x,,.
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1.2.1 Convergence Analysis

We now prove a convergence result which shows the speed of convergence and also an interval
from which initial guesses can be chosen.

Theorem 1.2.1. Suppose f € C* in some neighbourhood of o where f(a) = 0, f'(a) # 0. If
xg is chosen sufficiently close to «, the iterates (x,,)y_, of (Newton’s method) will converge to
a. Moreover, we have the following asymptotic rate:

Casm P
@ =z 2P

(1.2.2)

which shows that Newton’s method has quadratic convergence.

Proof. Choose a sufficiently small interval I. = [a — €, + ¢]| on which f’(z) # 0 on I.; such
interval exists by continuity of f’. Set

fg}x‘f”(@’ 1/1f"(x)]
M=—————=max—- | —— | .
2min /)] S 2 \|f(o)
zel,
Choose g € I.. From (1.2.1) with n = 0, we have the following estimate:
2
o — 11| < M|a — 20> = Mo — 11| < [M|a—x0\] :
If we choose xq satisfying M|a — xo| < 1 in addition to xg € I, then
Mla — x| < Mlao — 29| <1 and |a— 2| < |a—z9| <e.
A similar argument shows that
o —x,| <e and Mla—z,] <1 foralln>1.

Convergence is now easy to show. Indeed, iterating (1.2.3) yields
22

2 27l
Mo — z,| < [M]a—:z:n,ﬂ] < [M]a—:cn,2|] <...< [M|a—:c0\] :

Since M|a — zy| < 1, we have that

1 2n
la — x| < M[M\a—xol] —> 0 as n — .

Moreover, this implies that &, — a as n — o0 since &, lies between x,, and «. Finally, using
the assumption that f e C?%(1I.),

M) @
n—00 (Oé — l’n)2 n—00 2f,(xn) 2f’(0&) .
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Remark 1.2.2.

1. This is a local result and the interval of convergence is not known a-priori. We stress
again that the Newton’s method has quadratic convergence if zq is chosen in such a way

that )
|a — 2| < min {8, M} :

1
The constant o7 ensures that all the iterates (x,)_, remains in the interval I. where
f'(zn) # 0.

2. The assumption f’(«) # 0 says that « is a root of multiplicity 1. If o has multiplicity
p > 1, some modifications on the iteration formula is required in order to preserve
quadratic convergence. We will see the following proposed modification in Section 1.5:

e (7))

We will also show in Section 1.5 that it is possible to achieve convergence in any order
of accuracy if we increase the regularity of f.

3. If f is not C?, then we would still expect convergence, but the order of convergence might
be linear instead of quadratic.

1.2.2 Error Estimate

Using the Mean Value Theorem,
_ f(@n)
f1(&)
with &, between z,, and «. If f'(x) is not changing too rapidly near «, i.e. f is not oscillating
near «, then we have f'(¢,) ~ f'(x,) and

f(@n) = flzn) — fla) = f(&) (v —a) = a—x, =

S () (1.2.3)

f/(xn> = xn+1 - 'T’NJ

where the last equality follows from the iterative formula for (Newton’s method). Note that
(1.2.3) corresponds to absolute error estimate. For relative error estimate,

=Ty X —

~

a Tni1

o — Ty an-‘rl_xn

Note that these are emperical estimates under the assumption of Theorem 1.2.1.

Despite the quadratic convergence, Newton’s method is very sensitive to initial guess. Usu-
ally there are clear choices of an initial guess xy that comes from the problem, otherwise one
can run a few iterations of bisection method to obtain a reasonable xy. The other downside is
the need to evaluate the derivative explicitly, which could be computationally expensive. One
way to overcome this difficulty is to approximate the derivative using suitable finite-differences,
but this comes at the cost of a somewhat slower speed of convergence.
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Newton’s method: Newton(f,df, zg, £,root, itmax, ier), where

df = derivative f’
¢ = tolerance
root = numerical root
itmax = maximum number of iterations

ier = error flag.

1. itnum = 1.
2. Set denom := df (x).

3. If denom = 0, then set ier := 2 and exit.

5. If |21 — mo| < ¢, then set ier := 0, root = z; and exit.
6. If itnum = itmax, set ier := 1 and exit.

7. Otherwise, set itnum := itnum + 1, ¢y = z; and go to Step 2.

1.3 Secant Method

The secant method can be seen as a modification of Newton’s method, in which one replaces
the derivative f’ by the first-order backward finite-difference. More precisely, let xq, z1 be two
initial guesses of the desired root v of f(z) = 0. Recall that in Newton’s method, we performed
a linear approximation for f(x) in the neighbourhood of zy. An alternative to approximate the
graph of f(x) is using the secant line determined by (z¢, f(x0)) and (z1, f(x1)). The root of
this secant line, denoted by w9, is then used to approximate «. Since xg, z1, xs are collinear,

f(z1) — f(wo) _ f(z1) — f(z2) _ f(z1)

1 — Xo T — X2 $1—$2’

and solving for x4 gives:

~1/f (1)

Repeating this procedure yields the following iteration formula, known as the secant method

J

Wil = Ay — Jj 1) [f(;s : ;T(L;Lﬁ] , n=1. (Secant method)

It does not necessarily converge, but when it does, the speed of convergence is usually greater
than the bisection method.
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Figure 1.2: Secant method with f(z) = 2> — 2 and xy = 1,z; = 2. We obtain z, = 1.2.

Theorem 1.3.1. Assume f € C? in some interval containing o, where f(a) =0, f'(a) # 0. If
xg,x1 are chosen sufficiently close to a, the iterates (xy,)y_, of the (Secant method) converges
to a. Moreover, we have the following asymptotic rate

. |O./ . $n+1| _ f”(a) (v5-1)/2 (1 ; 1)
n—oo ]oz _ $n|(1+‘/5)/2 2f’(a) ) .0.
1+4/5
which shows that the order of convergence is p = 2\F ~ 1.62.

Proof. Following the proof of Theorem 1.2.1, choose a sufficiently small interval I, = [a—¢, o+
e] on which f’(z) # on I.. (Read proof from [AtkO8, pp. 68-69]).
[ |

The secant method only requires one function evaluation per iterate if we store the previ-
ous value, whereas Newton’s method requires two function evaluations per iterate. In terms of
computation, the secant method is more appealing since it is less costly comparing to Newton’s
method, but it is generally slower.

1.4 One-Point Iteration Methods

It turns out that root-finding problems belong to a more general class of problems, known as
fixed-point problem, which has the form x = g(x). Consider solving 2 — a = 0,a > 0. We
can reformulate this problem in terms of = = g(z) several ways:

l.x=2>+2—
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Consider solving for x = « the equation z = g(x) using the iteration method:
Tpi1 = g(z,), n=0. (FPI)

Such solution is called a fixed point of g. In the case of Newton’s method, we have

@
g(.T) - f/(lll'>

Lemma 1.4.1. Given g € C|a,b] such that g: [a,b] —> [a,b]. Then g has at least one fized
point « € [a,b] satisfying a = g(«).

Proof. Consider the function f(z) = g(x) — x which is continuous on [a,b]. The assumption
a < g(z) < b implies

f(a) = gla) —a >0
J(b) = g(b) = <.

It follows from the Intermediate Value Theorem that there exists ¢ € [a,b] such that
fle) =g(c) —c=0.

[ |
Theorem 1.4.2. Let g € Cla,b] such that g: [a,b] —> [a,b]. If there exists a constant
A€ (0,1) such that

9(x) = g(y)| < Alz =yl for all z,y € [a,b],

then g has a unique fized point o € [a,b]. Moreover, the iterates (z,)"_, of (FPI) converges
to the fixed point « for any choice of initial guess xq € [a,b] and we have the following a-priori
error estimate:

>\n
1—A
Proof. Observe that existence of a fixed point of g follows from Lemma 1.4.1. To prove unique-
ness, suppose there are two fixed points «, 5 of ¢ in [a,b]. Then

o = B = lg(a) —g(B) < Al = B = (1= N)]a—p| <0,

and it follows that a = (3 since (1 —\) > 0. Note that the iterates (x,)r_, € [a, b] since g maps
[a, b] into itself. Let a be the fixed point of g. Then

la — x| < |z1 — o). (1.4.1)

‘Oé - xn-i—l‘ = ’g(a) - g(wn)’ < )“O‘ - .Z'n’,
and iterating this inequality yields the inequality:
la — z,| < A" — 9] — 0 as n —> oo,

since A € (0,1). Thus, x,, — « as n —> o for any choice of initial guess zg € [a,b]. Finally,
to prove (1.4.1), applying triangle-inequality yields
o = mo| <=z + |21 — xo| = [g(a) — g(xo)| + 21 — 0]

< Ma — x| + |21 — 20| (1.4.2)

and so
n

1—A

a— x| < \'a — x| < |z — x0].
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Remark 1.4.3. The error estimate (1.4.1) shows that the iteration (FPI) converges linearly,
with the rate of convergence bounded by A. From (1.4.2), if we replace the pair (zg,x1) by
(Zn, Tnt1), then we obtain the following a-posteriori error estimate:

A

| — Tppa] < Mo — 2] < m|$n+1 —x,| forany n > 0.

There is a caveat: this error estimate is not applicable when A ~ 1.

Theorem 1.4.4. Assume g € C'[a,b] such that g: |a,b] —> [a,b] and

A= max |¢'(z)] < 1.

z€[a,b)

Then g has a unique fized point a € [a,b]. Moreover, the iterates (x,)r_, of (FPI) converges
to the fized point v for any choice of initial guess xq € |a,b] and

)\?’L
o — x| < Ao — x| < = /\|x1 — Zg].
Moreover, the following asymptotic rate holds:
lim 2L gy,

n—0 o — Ty
which says that the convergence of (FPI) is linear if ¢'(«) # 0.

Proof. Every result is a consequence of Theorem 1.4.2 except for the asymptotic rate. To show
the asymptotic rate, applying the Mean Value Theorem yields

a—Tp = g(a) —g(z,) = g/(ﬁn)(a — Tn),

for some &, between « and x,,. Since x,, — « as n —> o0, we also have £, — a as n —> 0.

Consequently,
lim = im /(&) = g'(a),

n—oo o — xn n—a0

where the last equality follows from the assumption g € C'[a, b].

Corollary 1.4.5. Assume « is a fized point of g, where g € C' in some interval around o with
|d'(a)| < 1. Then Theorem 1.4.4 still holds, provided the initial guess xo is chosen sufficiently
close to a.

Proof. Choose a number A\ > 0 satisfying |¢'(a)] < A < 1. Next, choose a sufficiently small
interval I, = [a — €, @ + €] such that

max [¢'(z)| < A < L.

xel.

We claim that g(I.) < I.: for any x € I. we have that for some & € I,

o — g(2)] = lg(e) —g(x)] = [¢'(©)lla — x| < Ao — =z <e.

The desired result follows by applying Theorem 1.4.4 on the interval I..
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1.5 Higher Order One-Point Methods

We extend Theorem 1.4.2 by considering methods with an order of convergence p > 1.

Theorem 1.5.1. Assume « is a fized point of g, where g € C? in some interval around o for
some p = 2 and

g(a)=g"(a)=...= g% V(a) = 0.
If the initial quess xq is chosen sufficiently close to «, then the iteration (FPI) will have an
order of convergence p. Moreover, we have the following asymptotic rate:

lim O — Tpia _ (_1)p—1 g(p)(a) )

n—w (o — T, )P p!
Proof. Tt follows from Corollary 1.4.5 that the iteration (FPI) converges since |¢'(a))| = 0 < 1.
To obtain the asymptotic rate, we expanding g(x,) about the point « to get:

g'(@)

Tast = 9(2n) = g(a) + g'(@)(@n — @) + = (wn — @) + ..
(p—1) ()
g () 1, 9P(6)
+ —(zn — )P + Ty —a)f
(p—1)! ( ) p! ( )
where &, is some number between a and z,. Since g¥)(a) = 0 for every j = 1,...,p — 1 by

assumption, the above reduces to:

Tpt1 — Q 1

- 4+ —1 -1
T —Pl6) — e = o g,)

Consequently,

O — Tpyy . —1)t . ®) (o
i 2200 iy SO - e (20,

n—0 (a - l‘n)p n—aw p'
where the last equality follows from the assumption that g € CP.
[ |

Example 1.5.2. As an illustration, we apply Theorem 1.5.1 onto Newton’s method. Since

)
g9() )

_ f"a)

f'(@)
convergence for Newton’s method. Note that if f”(a) = 0, then ¢”(a) = 0 and we obtain
super-convergence (p = 3).

It follows from f(«) = 0, f'(«v) # 0 that ¢'(«a) = 0, ¢" () and we recover the quadratic
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1.6 Newton’s Method For Repeated Roots

Considering Newton’s method as a fixed point problem, i.e.

Tn+1 g(l’ ) Z f/(xn) n ( )
Suppose f(x) has a root of multiplicity p > 1, we can rewrite f(x) as:
f(@) = (2 — a)h(), (1.6.2)

with h(a) # 0 and h continuous at © = «. Observe that if h is sufficiently differentiable at
x = «, then (1.6.2) is equivalent to

fla)=f(a)=...= f*V(a)=0, fP(a)=0. (1.6.3)

First, simplify ¢g(z) by computing f’(x):

f'(x) = ple — )P h(z) + (z — )" (2)

= g(z)=x— (z — a)’h(z)
9(x) p(x — a)=h(z) + (z — a)?h! (z)
(z — a)h(z)

ph(z) + (x — )l (z)

Next, computing ¢'(z) yields

gl =1- (phm n }(sz ey T di (ph<w> + ]fﬁ )l (z) ))

1
It follows that ¢’(a) = 1 — — # 0 since p > 1. Consequently, Newton’s method for repeated
p

—1
root converges linearly with rate of convergence 1 — — = L
p p

To recover quadratic convergence, we need to modify g(z) such that ¢’(a) = 0. From the
expression of ¢'(z), we propose a new function g,(z) that has the form:

e (1)

By construction, gI’J(a) = (0. Moreover, for some &, between o and z,, we have:

) — 9(a)]
_ g/ Oé) g ;é;n) (xn _ a>2]
)

gll(n
— T (n — ),

a—Tn1 = g(a) = g(za) = —[g(zn

which is consistent with the asymptotic rate from Theorem 1.5.1.
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1.7 Problems

1. Consider the iterative method to find a root « € [a, b] of f(x)

o b—a .
tuss = atan) = 00— (1 = s ) S (7.1

Show that the sequence of the iterates x,, converges to the root o and state the required
conditions on f(x). What is the expected order of the convergence?

Solution: First, if ¢ is sufficiently differentiable near z = «, then its pth derivative
with respect to x, evaluated at z = « for p > 1 is:

g10) =1~ (7515 ) £

I
D) = — (272 N o) ps>2
0 =~ (7= ) 10 23

Below we present three different convergence results, each having different assump-

S

tions on f:
(a) Suppose ¢'(a) =0, i.e. f'(a) = W. Assuming f € C? in some interval
around « for p > 2 and
b) —
fla) = TOZTO oy -~ i) =,

and the initial guess g is chosen sufficiently close to a. It follows from Theorem
1.5.1 that the iteration (1.7.1) converges, with order of convergence p.

(b) Suppose ¢'(«) # 0. There are two possible convergence results:

i. Assume g € C! in some interval around o, which amounts to assuming
f € C! in some interval around «, together with

@l = - (5= ) S

which is equivalent to

<1,

b—a
V= (f(b> ~ @

If the initial guess x is chosen sufficiently close to «, then the iteration
(1.7.1) converges from Corollary 1.4.5, with order of convergence p = 1.

) () < 2.
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ii.

If f e C'a,b] such that for every z € [a, b],

a<x—(ﬁ)ﬂm)<b,

where each of these corresponds to ¢: [a,b] — [a,b] and m[a)bc] ld' ()] < 1
z€la,

respectively. Then for any choice of initial guess zq € [a,b], the iteration
(1.7.1) converges, with order of convergence p = 1.
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Chapter 2

Interpolation Theory

Given a finite set of data points (x;,y;),7 = 0,1,...,n, the interpolation problem is to
find a function p(x) from a given class of functions that passes through these points, i.e. p(x)
satisfies

p(z;) =y;, 7=01,...,n (2.0.1)

The points xg, 1, ..., z, are called the interpolation points/nodes. Clearly, a trivial solu-
tion exists by simply connecting all given points with straight lines. However, one usually seek
smooth functions such as polynomials and trigonometric functions. We mention a well-known
result, the Weierstrass approximation theorem, which states that every continuous func-
tion on a closed interval can be uniformly approximated by a polynomial function.

2.1 Polynomial Interpolation Theory

Ideas from polynomial interpolation theory is widely used in developing methods in the ar-
eas of approximation theory, numerical integration and the numerical solution of differential
equation. Consider the problem of finding a polynomial p(x) that interpolates the given data
points (z;,y,), where xg, x1,...,x, are assumed to be distinct real or complex numbers, with
associated function values yo, y1,...,¥y,. This is a classic existence and uniqueness problem.

Observe that there exists infinitely many polynomials that interpolates the data if there is
no restriction on deg(p). However, we will show in Theorem 2.1.1 that a unique interpolating
polynomial p exists, provided deg(p) < n. Consider a polynomial of degree n which has the
form

p(z) = Z a;z) = ag+ ayx + ... + a,a". (2.1.1)
=0

Substituting (2.0.1) into (2.1.1) yields the following system of (n + 1) linear equations

ap + a1xg + ... + apry = Yo

ap + a1x1 + ...+ a,ry =y

ap + a1 T, + ...+ apT, = Yn.

21
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This can be written in the matrix form Va = y, where V e C**D*("+1) is the Vandermonde
matrix

[ 1 Ty xE ... mg_
1 xy 22 ... 2%
v=| e (2.1.2)
|1z, x? Ty, |
Theorem 2.1.1 (Existence and Uniqueness). Given (n + 1) distinct points xg, x1, ..., T, and
(n + 1) ordinates yo,y1,- .-, Yn, there exists a polynomial p(x) of degree at most n such that
p(x;) =y, for every j = 0,1,...,n. Such polynomial is unique among the set of all polynomials

of degree at most n.
Proof. We present three different proofs.

1. The linear system Va = y has a unique solution if and only if A'(V) = {0}. Suppose
Vb = 0 for some b. This means that the polynomial p(x) = by + byx + ... + b,a™ has
(n + 1) distinct zeros xg, z1,...,x,. It follows from the Fundamental Theorem of
Algebra that p(z) = 0, which gives b = 0.

2. We exploit the structure of the Vandermonde matrix (2.1.2). It can be shown that
det(V) = T[] (zi—x)).
osj<isn

This shows that det(V) # 0 since the interpolation nodes are assumed to be distinct.
Thus V' is nonsingular and there exists a unique solution to the linear system Va = y.

3. This last one is a constructive proof. It suffices to solve the following special case of the
polynomial interpolation problem: for some fixed 0 < i < n, let y; = d;;, where ¢;; is the
Kronecker delta function. This leads to finding a polynomial of degree < n having the
form

pi(r) =clx —x0) ... (x —2i1)(x —2i51) ... (x — 2y),
where ¢ is a constant to be determined. Solving for p;(z;) = y; = d;; = 1 yields

c= [(:1/;Z —x0) .. (T —wim) (T — Tigr) .- (2 — xn)] _1.

This can be written in a more compact form

pile) = Li(z) = ] ("”” — "Z) L)) = 6. (2.1.3)

g NV T

We claim that the unique solution to the general problem is given by

pa(T) = Zyzl1<x) (2.1.4)
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It is clear from (2.1.3) that p, satisfies (2.0.1) and deg(p,) < n. To prove uniqueness,
suppose ¢ is another polynomial of degree < n satisfying (2.0.1). Then

p(x;) —q(z;) =0 forevery j =0,1,...,n.

Since p — ¢ is of degree < n and p — ¢ has (n + 1) distinct zeros, it follows from the
Fundamental Theorem of Algebra that p — ¢ = 0.

[ |
Remark 2.1.2.

1. The set of functions [;(z) form the Lagrange basis polynomials. The formula (2.1.4) is
called Lagrange’s formula for the interpolating polynomial, where [;(x;) = ;;. Given
two pairs of data (xo, o), (z1,¥1), p1(z) corresponds to linear interpolation having the

form
r — T T — X
To — I1 Tr1 — g

Given three pairs of data (xg,yo), (z1,v1), (Z2,92), p2(z) corresponds to quadratic in-
terpolation having the form

(x —x1)(x — Ig))] "o+ l((x — x0)(z — x2))] . l((m —x0)(z — 1)

($0 - xl)(xo — X2 Ty — Io)(Il — T2 Lo — Jfo)(Iz - xl)

pa() = Yo-

2. Uniqueness is a strong property in the theory of interpolation. Very often, we derive other
formulas for the interpolation polynomial and they must coincide with the Lagrange’s
formula by uniqueness. Without uniqueness, the linear system Va = vy is not uniquely
solvable; this means that there exists y* such that there is no interpolating polynomial
of degree at most n satisfying (2.0.1).

0.826

Example 2.1.3. We compute the linear and quadratic interpolation to e using the following

values

T er

xo | 0.82 | 2.270500 | yo
1 | 0.83 | 2.293319 | »1
o | 0.84 | 2.316367 | yo

Observe that p2(0.826) is unique in this case, but we have three different choices for p;(0.826).
One can show that p(0.826) ~ 2.2841639. On the other hand, since 0.826 € [0.82,0.83], we
compute p;(0.826) using the first two pairs of data; this gives p;(0.826) ~ 2.2841914. Compar-
ing them to the exact value e"%%0 ~ 2.2841638, we deduce that py(0.826) is a better choice of
interpolation, which agrees with our intuition.
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If a function f(x) with sufficient regularity is given, we can approximate it using the La-
grange’s formula (2.1.4

(l’f fozz

where n is the degree of approximation. The followmg theorem is a standard result concerning
the error of interpolation.

Theorem 2.1.4. Let xg,1,...,2, be (n + 1) distinct real numbers and let f be a given
real-valued function such that f € CT*V(I,), where I, is the smallest interval containing
{t,x0,x1,...,2,} with t some given real number. There exists £ € I; such that

Z (t — xo)(t(; f_l)l), (t—xn) FOED gy (IEF)

Proof. Note that the interpolation error formula (IEF) is trivial if ¢ is any node points, so
suppose not. For all x € I;, define the following quantity

n

D f@li(x) = f(z) — pa(x)

(t)
(z — x;). Observe that

(5]

where E(x) is the error function and ¢(z) =

\“

SN

—.

o

Jj=
1. Since both E(z) and ¢(z) are C™*) functions on I, so is G € C"F(1,).

2. G has (n+2) distinct zeros {t, zg, x1, . . ., , } on I;. Applying the Mean Value Theorem
on the (n+ 1) subintervals between these zeros shows that G’ has at least (n+ 1) distinct
zeros on I;. An induction argument shows that GV) has at least (n + 2 — j) distinct zeros
onI;,0<j7<n+1.

Let & be a zero of GV on I, i.e. GV (£) = 0 for some € € I,. Computing GV yields

G(n+1)(x) _ E("“)(m) _ l¢(n+1)(x)] Et)

(1)
n !
_ f(nJrl)(x) . [( gb'z_t)l) :| E(t)
— (= G(n+1)(£) _ f(”+1)(§) _ [(nqb—(;)l)'} E(t)

The desired result follows from rearranging the equation above in terms of E(t).
|

Example 2.1.5. Consider f(z) = e” on [0, 1]. Choosing the linear interpolation p;(z) yields
the interpolation error
(x — x)(z — 1) ¢

e’ —pi(x) = 5 es,
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where & € <min{x,xo,w1},max{x,xo, x1}> Assume that x € (xg,x;), then

—(x — x0) (21 — Jv)eg
5 :

Let h = 21 — zo and consider g(z) = (x — zo)(x; — x). Computing ¢’ gives

e’ —pi(x) =

To + T1

Jx)=z1—x—(r—20) =20+ 20+21=0 < 2= 5

Thus, ¢ has a maximum at z = (2o + x1)/2, with value

<x0+x1> h? E (2)] < h? 5<h2e
g 2 8 P 8 /] eel0,1] 8

2.2 Newton’s Divided Difference Interpolation Formula

2.2.1 Divided Difference

We first introducing a discrete version of the derivative of f(z). Let xq,x; be two distinct
numbers. Define the first order divided difference of f(x) as follows

flxo, 1] = f@) = F@o) (2.2.1)
1 — XTg
Observe that if f(z) is differentiable on an interval containing z, and z1, then it follows from
the mean value theorem that f[zg, 1] = f'(c) for some c € (xg, x1). If 2y and x; are sufficiently
close, then

o +£L’1>

flzo, 1] =f’< 5

A nice feature about higher order divided differences is that one could obtain a recursive
formula using lower order divided differences. Let xg, x1,z2 be distinct real numbers. Define
the second order divided difference of f(x) as

[l wa] = flwo, 1]

= 222
flzo, 1, 2] £y — T ( )

Let xg, 21, x2, x3 be distinct real numbers. Define the third order divided difference of f(x)

as
f[iﬁ, 3327953] - f[iUO, 3317552]
T3 — T

(2.2.3)

f[l'o, X1, T2, x?)] =

In general, for distinct real numbers xg, x1, ..., z,, define the (n + 1)th order divided dif-
ference of f(z) as
flzo,z1,. .. x,] = flov sl =l Tnc] (2.2.4)

Tp — Lo




26 2.2. Newton’s Divided Difference Interpolation Formula

Theorem 2.2.1 (Mean Value Theorem for Divided Differences). Let n > 1 and assume that

feC"a,pB]. For any (n+ 1) distinct numbers xo, x1,...,x, in [, 5], we have the following
equality
f™(e
f[.’]l’o,l’l,...,l'n] = 'n,'( )
for some c € (min{xo,xl, oy Tp ty max{xg, T, . . . ,xn})

e [t relates the divided difference to the classical derivative for some unknown point.

Lemma 2.2.2. We have the following properties of divided differences:

(a) The nth divided difference is permutation invariant. More precisely, for any permutation
(10,91, .- ,in) of (0,1,...,n) we have that

flxios Tiys -y, | = flzo, 1, ., Tn).

(b) One can relazed the definition of divided difference by removing the requirement that
interpolation nodes are distinct. Define

_ f(n) (-CEO).

n!

f[[[‘o,l'o,...,l‘o] :

For the first order divided difference of f(x) on a single node point xg,

(f(m) - f(%‘o)) _

flxo,zo] = lm flzg,z1] = lim
T — To

T1—T0 1 —T0

2.2.2 Newton’s Divided Difference

In this subsection, we employ the concept of divided difference from Subsection 2.2.1 to define
another convenient form of the interpolation polynomial. Given (n + 1) distinct interpolation
nodes, let p,(x) be the polynomial interpolating f(x;) at x; for every j = 0,...,n, where
deg(p,) < n, i.e.

pn(xj) = f(z;) forall j=0,...,n. (2.2.5)

We establish such interpolation polynomials p,(z) as a recursive relation involving divided dif-
ference.

Theorem 2.2.3. Consider the Newton’s divided difference interpolation polynomial
P defined by

I
(<

(x0) + (x — x0) f|z0, 21]
(o) + (x — x0) flzo, 1] +(2 — x0) (2 — 1) fl0, T1, 22]

/

p1()
pa(7)

Y

p1(7)
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Pn(x) = poei1(z) + (x — x0)(x — 21) . .. (T — Tpe1) fx0, T1, - oy 0], N =1 (2.2.6)

o )
-~

correction term

Then p,, solves the interpolation problem (2.2.5).

Proof. 1t is clear that for n > 1, p,(z) is a polynomial of degree at most n by construction.
From Theorem 2.1.1, it suffices to show that these polynomials satisfy (2.2.5). Moreover, it
suffices to show that p;(x;) = f(z;) for every j = 0,1,...,n by the recursive relation. The
case n = 1 is clear and here we only prove it for the case n = 2:

Remark 2.2.4. By Theorem 2.1.1, the Newton’s divided difference formula must coincide
with the Lagrange’s formula (2.1.4). The former has the advantage over computation, in that
it can be defined recursively in terms of lower order interpolation polynomials plus some correc-
tion terms. Moreover, the coefficients of the polynomial are computed using divided differences.

To evaluate the Newton’s interpolation polynomial in an efficient manner, recall the recur-
sive relation (2.2.6)

po(z) = Do+ (x —x0) D1 + (v —x0)(x — 1) Do+ ... + (x —2¢) ... (x — 1) Dy, (2.2.7)

where D; = f[xo,...,xj-1],7 = 0,1,...,n. We can rewrite this in a nested formula

pn(x) = Do+ (m—xo){Dl + (x— 1) [DQ +...+(@—2p o) [Dpa+(x—2n1)Dy] ... ]} (2.2.8)
For example,
ps(z) = Do + (z — xo)[Dl + (x —21)[D2 + (xz — xg)Dg]].

The nested formula (2.2.8) has the numerical advantage that it only involves n multiplications,
while (2.2.7) involves n? multiplications. We are now ready to prove the Mean Value Theo-
rem for Divided Differences.

Proof of Theorem 2.2.1. Let t be areal number, distinct from the interpolating nodes xg, 1, . .., .
Recall the Newton’s divided difference formula (2.2.6)

Prni1(z) = pu(z) + (2 — x0)(x — 1) ... (x — ) [0, 1, - - -, T, ]
Using pn+1(t) = f(t), we obtain the error formula

f&) = pa(t) = (t —xo)(t —x1) ... (t — tn) flxo, 1, - - -, T, L] (2.2.9)
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Comparing with the error formula in Theorem 2.1.4, we see that

F(E)

CES for some € € I,. (2.2.10)
n !

f['r07x17"'7xn7t] =

Remark 2.2.5. Setting n = m — 1,t = z,,41, (2.2.10) is equivalent to

£

m)!

flxo, z1, . xm] =

It turns out that convergence is related to the distribution of nodes.

Example 2.2.6. Suppose f(x) = sin(x) is approximated by pg(z) that interpolates f at 10
points in [0, 1]. Using the error formula from Theorem 2.1.4,

£) = (@) < 17 <H<x _m) £99)] < 157

1=0

2.3 Further Discussion on Interpolation Error

Assume that f € C*Y(I,), where I, is the smallest interval containing the points g, 1, . . ., Ty, .
Define the following quantity
Crer = max | fH V(D).
Ely

From the interpolation error formula (IEF), one has to estimate the polynomial

n

dn(z) = [ [(z —21) = (z — o) (x — m1) ... (& — ),

1=0

independent of the interpolation nodes. A direct estimate on the error yields

Cn+1
max |f(z) = pul@)l < F gy max |én (@)

1. Consider n = 1. Then ¢;(x) = (x — x¢)(x — x1) and setting 1 — xy = h, one can show
that

h2 C2h2
A2 0@l =7 = max [(z) ~mlo)l < =~

This shows that the error is bounded in terms of distance between two nodes.

2. Consider n > 2. Assume we have uniform/equidistant nodes {x¢,x1,...,z,}, where
xj=x9+jh,j=0,1,...,n.
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(a) For the case n = 2, one can show that

2\/> 3 Cg\/ghQ
morgfg(m |po(z)| = —h° = xorgmai(m |f(z) — po(x)] < —

This shows that the error is bounded in terms of (uniform) distance between nodes.
More importantly, this implies that the distance between x and x; does not affected
the estimate, although it will make a difference for higher degree interpolation.

(b) For the case n = 3, one can show that

1.4
o Jmax |p3(x)| = h*.

However, choosing x € (x1, z3) yields a different bound

max |gs(2)] = 2.

T1<TET2 16

(c) For the case n = 6,

max |¢¢(7)| = 96R7, max |¢g(z)| = 12h".

TOSTLTg ToKTKTY

We deduce that under the equidistant interpolating nodes assumption, the nodes should be
chosen such that the point of interest z is as close as possible to the midpoint of [z, z,] in
order to minimise the interpolation error.

The above discussion leads to a natural question: does the interpolating polynomial con-
verges to the true function as n — oo if the interpolating nodes are uniformly spaced between
them? More precisely, consider approximating a given function f on a given interval [a,b]
using interpolating polynomials. Construct an uniformly spaced subdivision of [a, b], i.e. for
each n > 1, define

h = ., xyj=a+jh, j=0,1,....n

and let p, be an polynomial interpolating f(x) at the interpolation nodes xg, x1,...,x,. Does

m[ax\ () — pp(x)] — 0 as n —> w07
xTE

Surprisingly, the answer is no; there exists functions that are well-behaved but convergence
does not occur.

Example 2.3.1. Consider the Runge function f(z) =

T+ .2 o [—5,5]. It can be shown that
T

sup [f(x) — pn(x)] = <.

neN

for any 3.64 < |z| < 5,

Viewing f as a function in the complex plane C, we see that f has simple poles at z = +1.
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2.4 Chebyshev Polynomials of First Kind

Consider the interpolation error over = € [—1,1]. We are interested on the following quantity

The Chebyshev polynomials of the first kind are defined by the following recurrence
relation: Let Ty(z) = 1,T1(z) = z and

Thir(z) = 22T, (x) — Tho1(x), n>1 (2.4.1)
Observe that T, is a polynomial of degree n for each n > 0 and T,,(z) = 2" 'z" + .... For
example,
Ty(z) =22% — 1

Ts(x) = 42® — 3z
Ty(z) = 82" — 8% + 1.

Lemma 2.4.1. For any x € [—1,1], the Chebyshev polynomials of the first kind have the
following closed form expression

Tn(z) = cos(ncos™'(z)), n=0. (2.4.2)

Proof. First, the expression (2.4.2) is well-defined under the assumption that « € [—1,1]. The
case n = 0,1 is trivial. For n > 2, we need to show that (2.4.2) coincides with the recursive
relation (2.4.1). Using the double-angle formula,

cos((n £ 1)0) = cos @ cos(n) F sin 0 sin(nh)
= cos((n + 1)0) = 2cosf cos(nf) — cos((n — 1)0)

The desired result follows by setting § = cos™!(x).
]

Remark 2.4.2. It follows that |T,(z)| < 1 and T,,(cosxz) = cos(nz) for all x € [—1,1].
Moreover,

) =(-1), 0<j<n (2.4.3)

):o, 0<j<n-—1 (2.4.4)

Theorem 2.4.3. If p is a monic polynomial of degree n, then

_ > 21—11'
Pl = max [p(z)
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Proof. We argue by contradiction. Suppose the given estimate fails to hold. This means that
Ip(z)| < 2'™ for all x € [—1,1].

Normalising the highest term in Chebyshev polynomials of the first kind, define a monic poly-
nomial ¢ = 27"T,, which has degree at most n. Let x; = cos (%r) ,0 <7 <n. It follows from
Remark 2.4.2 that

Ip(z)| < 27" = (1) q(z;). (2.4.5)
On the other hand, we have the trivial inequality
(=1Yp(x;) < |p(x))l- (24.6)
Combining (2.4.5) and (2.4.6) gives
(~1V[gla;) — pla;)] > 0, 0<j<n. (2.4.7)

Now, (2.4.7) shows that the function ¢ — p oscillates in sign (n + 1) times on [—1, 1], which
implies that g—p has n distinct roots on (—1, 1). This contradicts the Fundamental Theorem
of Algebra, since ¢ — p is a polynomial of degree < n — 1 due to the assumption that both ¢
and p are monic polynomials.

[ |

Theorem 2.4.4 (Interpolation error for Chebyshev nodes). Given a real-valued function f €
C™O(1,), suppose the interpolating nodes {x;}7_, are chosen to be zeros of the Chebyshev
polynomial of the first kind T,1 given by

27+1
szcos,(u), 0<y<n.

2n + 2
and I, is the smallest interval containing {x,xo,x1,...,2,}. The interpolation error formula
satisfies
1 n
[ (x) = pal@)] < 5=y max |fHD(E)].

2n(n + 1)! ¢e[-1,1]
Proof. First, a direct estimate on the interpolation error over the interval z € [—1, 1] gives

||ZL’—.Tj

7=0

! % [£"(6)] max

_ < —
|f (@) = pu(2)] (n+1)! 5&171,1] ze[-1,1]

Theorem 2.4.3 gives

max > ol-(n+1) _ 9—n
1)

z€[

n
| |I—I’j
7=0

One can show that this bound is actually attained if one chooses the interpolation nodes z; to
be zeros of Chebyshev polynomials of the first kind.
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Remark 2.4.5. Suppose f is now a C"*Y) function on [a,b]. One can obtain a function g on

[—1, 1] equivalent to f using an affine transformation, given by

g(l‘)=f<(b+a)+2x<b_a)>, —l<z<l

This can be found by guessing an ansatz of the form y = Cx + D and solving for C, D given
that y(—1) = a,y(1) = b. The “transformed” Chebyshev nodes has the form

. _cH—b+ b—a (25 + 1)m 0<i<
&= 5 Jeos|\ 5o ) 0<ism

b o n
Since g™ (x) = 5 ¢ f™(z), it follows from Theorem 2.4.4 that the interpolation error of

a function f € C"*V[a, b] satisfies

1) =) < gt (5w L7

2n(n + 1 ge[-1,1

2.5 Approximation Theory

The choice of using polynomials in approximating continuous functions is justified by the
following two theorems:

1. Weierstrass approximation theorem, which states that every continuous function on
a closed interval can be uniformly approximated by a polynomial function to any desired

accuracy. If f is only bounded, then we only have pointwise convergence. Note that a
constructive proof is given using the Bernstein polynomials

pa(T) = kz: (Z)f (%) 1 —2)" " 0<z <.

2. Taylor’s theorem, which states that for any f € C™*Y[a,b],

f(@) = pu(®) + Ry (o),

where
™) (5,
pole) = fao) + - w) ) o T )
f(n+1) (5) n+1
Ryi(z) = m(x —x0)"",

for some £ between z and xg.
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2.5.1 The Minimax Approximation Problem

Let f be a continuous function on [a,b]. Since there are many polynomial approximations
p(z) to f(z), it is natural to ask what is the best possible accuracy that can be obtained using
polynomials of degree at most n > 0. This raises another question: how do we qualitatively
describe accuracy of polynomial approximations? One can measure the difference using the L?
norm or L* norm. The latter leads to the minimax error:

pn(f) = inf If =4l (2.5.1)

geR[z]: deg(q)<n

This is again an existence and uniqueness problem. If such polynomial approximation ¢*(x)
exists, i.e.

pu(f) = If = @*loo

then ¢*(z) is called the minimax approximation to f(x) on [a, b].

Example 2.5.1. We wish to compute the minimax polynomial approximation ¢;(z) to the
function e” on the interval [—1,1]. Let ¢} (z) = ao + a1z, we present a geometrical argument
here. Let e(x) = e” — [ap + aix] and p; = max,e[—1,17|€(x)|. Observe that

1. ¢} and €® must be equal at 2 points in [—1,1], say at —1 < 21 < x5 < 1; otherwise the
approximation can be improved by moving the graph of ¢f appropriately.

2. The maximum error p; is attained at exactly three points, namely
e(—1) = e(x3) = €(1) = p1, where x3 € (21, 22).
3. Since €(x) has a relative minimum at x3, we have €'(x3) = 0.

This yields four equations

e —[ag — a4] =1

e —lap + a1] = P

e™ —lag + amzs] =m

e’ —ay =0,

which has solution
-1

e—e
ap = 5 ~ 1.1752
z3 = In(ay) ~ 0.1614

-1
L= % + %(e — 1) ~ 0.2788

ap = p1 + (]. — ZE3)G1 ~ 1.2643.

Hence, ¢ * (z) = 1.2643 + 1.1752z and p; ~ 0.2788. We note that the error resulting from
Taylor’s approximation is approximately 0.718.

Remark 2.5.2. In general, one uses Remes algorithm to construct minimax approximation.
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Theorem 2.5.3 (Chebyshev Equioscillation Theorem). Given any f € Cla,b], for any n =0
there exists a unique polynomial ¢ (x) of degree at most n for which

on(f) = If = pllo-

Such polynomial is uniquely characterised by the following property: there are at least (n + 2)
points satisfying a < xog < 11 < ... < Ty < Tpi1 < b for which

flag) = qi(a;) = o(f,n) (=1 pu(f), j=0,1,...,n+1,

where o(f,n) = +1 depending on the function f and n.

2.5.2 The Least Squares Approximation Problem

Due to the difficulty in computing the minimax polynomial approximation, one usually perform
an intermediate approximation called the Least Squares Approximation. Essentially, one
replaces the L norm in (2.5.1) with the L? norm

b
lolt = [ lotw)Pdo. g Cla.b),

This leads to define
M) = b |f =] (2.5.2)

reR[z]: deg(r)<

Example 2.5.4. Consider f(z) = ¢ on [—1,1] and define ri(z) = by + byz. We wish to
minimise

1
=l = [t bl = B ),
—1

o  OF
where F'(bg, by) is a quadratic polynomial in by, b;. To find a minimum, we set T 0

0 1
Then

a%(ex—bo—bw)de:—QJl <ex—b0—b1:v> de =0
—1 0bo
0

-1
7 (ex — by — b1x>2 dr = 2[11 <ex — by — b1x> (—x)dx = 0.

1!

by = QJ e’dr =sinh(1l) ~ 1.1752
~1
3 [l

b = QJ re®dr = 3e !~ 1.1036.
~1

Hence, ri(x) = 1.1752 + 1.10362 and it can be shown that [e® — 7|, ~ 0.44.
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It is often useful to consider approximation of the form
7’;;(1’) = Z(fa ¢j)w¢j7
j=0
where (-, ), is now a weighted inner product defined by

b
(f.9)u = f w(z) f(2)g(x) de

a

for some nonnegative weight function w(z) on (a,b) and (¢;) is an orthonormal (with respect
to (v, )w) set of polynomials. Some examples:

1" dr
w(z) =1, P,(x) = %%[(1 —2H", n=1, ze[-1,1]. (Legendre)
1
w(z) = — T(z) = cos(ncos™(z)), n=0, ve[-1,1]. (Chebyshev)
_ T L _ 1 dn n,_ —x > O 0 L
w(zr) =e 7, n(z) = n!e—xﬁ(m e ), n=0, ze|0,00) (Laguerre)

2.6 Problems

1. Given the interpolation data (points) (0,2), (0.5,5), (1,4),

(a) Find the function f(x) = ag + ay cos(mx) + ag sin(mwz), which interpolates the given
data;

Solution: Substituting the interpolation data into the function f(x) yields the
following system of linear equations

2=uag+arcos(0) +azsin(0) = 2=a9+a (2.6.1)
5 = ag + a; cos (g) + ay sin (g) = 5 =aqg+ a (2.6.2)
4=ap+aycos(m) +agsin(nr) = 4=ap—a. (2.6.3)

Adding (2.6.1) and (2.6.3) yields 6 = 2ay = ap = 3. We then solve for a;, ay
a1 =2—ay=2—-3=—-1 and ay=5—ay=5—-3=2.
Hence, the function f(z) that interpolates the given data is

f(z) =3 — cos(mz) + 2sin(wx).

(b) Find the quadratic polynomial interpolating the data.

Solution: Denote the given interpolation points as

(x07y0) = (072)7 (xlayl) = (0'575)7 (x27y2) = (174)'
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2.6. Problems

We know that the quadratic interpolating polynomial py(z) has the form

J#i

We now compute all the ;(z)’s:

_ @—w)e—a) (@=0)(a=05) _
<$2—IK0 wg—xl) (1_0)(1_0_5) (2 1).

(x—x)(r—x2)  (z—05)(z—1) — (22 — 1) (2 —
() = (2o — 1) (o —x2)  (0-0.5)(0—1) . ! !
(z—z)(w—25) _ (2=0)&-1) _ .
) = e =) - 05005 -1 e
)(
)(

Hence,

pa() = Y L@y = (22 — 1)z = 1)(2) — da(z = 1)(5) + 2(2¢ — 1)(4)

i=0
= 2z — 1)[22 — 2 4+ 4z] — 20x(z — 1)
= (22 —1)(6x —2) — 20z(x — 1)
= 122% — 10z + 2 — 202% + 20z
= —82% + 10z + 2.

2. Bound the error in terms of A > 0 of the quadratic interpolation to f(x) = e on [0, 1]

with evenly spaced interpolation points zg,x; = o + h,xs = ¢ + 2h. Assume that
To < T < Xo.

Solution: Suppose zy < r < 5. First, a direct estimate yields

(z —x0)(x — 1) (T — T2)

le” — pa(x)| = 30 e for some ¢ € [xg, 23]
er?
< <?) max |(z —x)(z — x1)(x — 22)|
z€[zo,22]
e
< |=] ma T)|.

Since the interpolation points are evenly spaced, to find the extrema of g(x) over
[z0, x2], it is equivalent (by shifting along the z-axis) to find the extrema of the
function

G(z) = (v + h)x(xr — h) = 2° — h>z  over [—h, h].
Setting G'(2*) = 0 and solving for z* yields

h2
0=0_G'(a*) =3(2*)? - h* = (%)= 3 = ¥ =+

E
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3.

Since G(z) is a cubic function with three distinct zeros, these critical points x*’s must
correspond to exactly one local minimum and one local maximum. Because G(z) is

RORIEVIEN

max [g(z)| = max |G(z)| = ‘G (__)‘

z€[z0,x2] z€[—h,h]

an odd function,

W <2> 2
V3 \3 33
Hence, the error of the quadratic interpolation to f(z) = e* on [0, 1] with evenly
spaced interpolation points g, x1, X2, Tg < T < T, satisfies the bound

. e 3 e 3 \/76 3
e~ (o) < () (;jg) -2

a) Suppose you are given symmetric data
y g y
(xi,y5), it=-n,—n+1,....,n—1n,
such that
x_;=-x; and y_;=—y, 1=0,1,...,n. (2.6.4)

What is the required degree of the interpolating polynomial p, where x;’s are distinct
nodes? Show that the interpolating polynomial is odd, i.e. p(x) = —p(—x) for all
real numbers x.

Solution: Since we were given (2n + 1) distinct points, it follows from Theorem
2.1.1 the unique interpolating polynomial p(z) is of degree at most 2n. We
exploit the uniqueness of p(z) to show that p(z) is an odd function. Consider
the polynomial ¢(z) := —p(—=z). Then

—p(—x;) =-plx_j) =~y =y;
—p(—z—;) = —plz;) =-y; =y

q(x;)
q(z_;)

This implies that ¢(x) also interpolates the given data and it follows from the
uniqueness of interpolating polynomial that

Finally, since p(z) is an odd function, it must be the case that p(z) only contains
terms with odd degree. Consequently, the required degree of the interpolating
polynomial p(x) is 2n — 1.
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Remark: We could deduce the same result geometrically. We first find the unique
polynomial p (x) interpolating (x;,y;),i = 0,1, ..., n, which is of degree n. Since
the given data is symmetric, the unique polynomial interpolating (x_;,y—;),1 =
0,1,...,n is simply the odd extension of py(x). Counting the number of critical
points leads us to deduce that the required degree of the interpolating polynomial
1s 2n — 1.

(b) Let l;(x) be the Lagrange basis functions with distinct nodes g, z1,...,z, with

n = 2017. Prove that
2017

Z li(z) = 1.

for all .

Solution: We exploit the uniqueness property of the interpolating polynomial.
Consider (n + 1) distinct nodes xg, 1, . . ., x, with corresponding values y; = 1
for every © = 0,1,...,n, where n = 2017. The interpolating polynomial in
Lagrange form is given by

2017 2017

Pn(x) = paoi7(z) = Z li(z)y; = 2 li().

At the same time, the constant function p(z) = 1, which is a polynomial of

degree 0, also interpolates the data points (x;, f(x;)),7 = 0,1,...,2017. We
2017

conclude by uniqueness that 1 = Z l;(z) for all .
i=0

Remark: The result holds for any arbitrary but finite n > 1.

a+ bx
1+ dx

p(z;) =y, i=1,2,3,

4. (a) Consider finding a rational function p(z) = that satisfies

with distinct x1, 29, 3. Does such a function p(z) exists, or are additional conditions
needed to ensure existence and uniqueness of p(x)?

Solution: Given data points (z;,v;),7 = 1,2,3 with distinct x4, x9, z3, con-

b
sider a rational function p of the form p(x) = iLi— dx‘ Suppose we impose the
x
condition that p(x;) = y; for every i = 1,2, 3. First, expanding p(z;) = y; gives
+ bx;
(11+ dm =y = a+br; =y (1+dr;)) = a+ (x;)b— (v;y:)d = y;. (2.6.5)
1)

where we require 1+ dz; # 0,7 = 1,2, 3. Since (2.6.5) is true for each i = 1,2, 3,
we obtain three linear equations with unknowns a,b,d. In matrix form, this
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system of linear equations can be wrritten as

I @1 —my | |a Y1
Mz =11 9 —myp| [b]| = |v2| =¥ (2.6.6)
1 x5 —z3ys3| | d Y3

The linear system Mz = y has a unique solution if and only if the matrix M
is nonsingular, or equivalently, det(M) s 0. Computing det(M) by expanding
the first column yields

To —T2Y2 Ty —T1Y1 n Ty —T11

det(M) = -
T3 —I3Y3 T3 —I3Y3 Ty —XT2Y2
= [—22x3y3 + T2x3y2] — [—T123Yys + T123y1] + [—2122Y2 + T122Y1 ]
= [m1h2e — T1y123] + [X2yoxs — Tayoxr| + [X3Ys21 — 3Y322]
= T1y1(22 — x3) + Taya (w3 — 21) + 23Y3(T1 — T2).
Thus, for any given data points (z;,¥;),7 = 1,2, 3, the given interpolating prob-

lem has a unique solution if and only if

T1y1 (T2 — x3) + Taya(xs — x1) + T3y3(x1 — 22) # 0.

Below, we investigate a few special cases.
i. WLOG, suppose z; = 0. Then det(M) reduces to

det(M) = zoys3 — T3Y3T2 = Tax3(Y2 — Y3).

Since x4, 3 are both nonzero, for this particular case, the given interpolating
problem has a unique solution if and only if ys # y3.

ii. Suppose y; = y» = y3 = 0, then det(M) = 0 and the interpolating prob-
lem has infinitely many solutions z € R? of the form (0,0, \)%, X any real
numbers.

iii. WLOG, suppose y; = y2 = 0,y3 # 0. Then det(M) reduces to
det(M) = x3ys(x1 — x2).

Since x1 # xo, if y; = yo = 0, the given interpolating problem has a unique
solution if and only if (x3,y5) # (0,0).

b) Let Loy, L1y..., Ty be distinct real points, and consider the followin interpolation
g
problem. Choose a function

F.(x) = Z c;e’,
7=0

such that
Fn(xz) = Yi, 7;:0717'-'777‘7

with {y;}1, the given data. Show that there is a unique choice of ¢y, ..., c,.
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Solution: Introducing a change of variable z = €”, the function F),(z) becomes:
Fo.(x) = gu(2) = Z ;2.
=0

The distinct real points {xg, 21, . .., x,} becomes {e* e ... e*} which are also
distinct real points since the exponential function is injective. The interpolating
problem now takes the following form: find g,(x) such that g,(z;) = y;,j =

0,1,...,n. Since g,(z) is a polynomial of degree at most n, it follows from
Theorem 2.1.1 that there exists a unique choice of {cy,...,c,}.
1
5. Consider the function f(r) = — o the interval [—5,5]. For each n > 1, define
x

h =10/n and z; = =5 + jh for j = 0,1,...,n. Let p,(x) be the polynomial of degree n
which interpolates f at the nodes xg,z1,...,z,. Compute p, for n = 1,2,...,20. Plot
f(z) and p,(x) for each n. Estimate the maximum error |f(z) — p,(z)| for z € (=5,5).
Discuss what you find.

Solution: We choose to find the interpolating polynomial in Newton’s form. We first
compute all the required higher order divided differences, p,(x) can then be found
by using a nested form of polynomial multiplication, i.e.

pn(x) = D0+(x—x0){D1+(x—x1)[D2+. (=2 9)[Dy1+(x—2p_1)Dy] .. ]},

where D; = flxo,...,2j_1],7 = 0,1,...,n. The numerical result shows that the in-
terpolating polynomials are all even functions, this is due to f being an even function.

We choose to measure the interpolation error using the L norm, i.e. for each
pn(z),mn =1,2,...,20, we compute

E, = max |f(xz) —pn(x)| orequivalently E, = —| min —|f(z) — p,(x)]
x€[—5,5] z€[—5,5]

The command fminbnd is applicable to the second expression of F,,. Note that fminbnd
returns the argmin of the function —|f(z) — p(x)| over [—5, 5], but unfortunately this
does not correspond to the absolute minimum over [—5,5]. To overcome this, we
plot the graph of —|f(x) — p(x)|, locate the argmin z* of its absolute minimum over
[—5,5] from the graph and apply fminbnd on an interval around z*. We present the
interpolation error E,, for different n = 1,2,...,20 in the following table.
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n | Interpolation error F,, n | Interpolation error F,
1 0.961538461538462 11 | 0.556775115226897
2 0.646229268183428 12 | 3.663394060743355
3 0.707013574660634 13 | 1.070105627260649
4 0.438357141903084 14 | 7.194881834955054
5 0.432692307692308 15 | 2.107561131513046
6 0.616947968654934 16 | 14.393854684643465
7 0.247358606559315 17 | 4.224288081812976
8 1.045176657474316 18 | 29.190582028039042
9 0.300297936742191 19 | 8.579090824899694
10 | 1.915658914837769 20 | 59.822308737051372

The interpolation error is consistent with the result stated in the lecture, namely for
any 3.64 < |r| < 5 we have that

sup [ f () — pa(2)] = 0.

neN
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2.6. Problems




Chapter 3

Numerical Integration

In this chapter, we derive and analyse various numerical methods for approximating definite
integrals of the form

b
1) = | 1@ (3.0.1)
a
with [a,b] some finite interval. The approximation of I(f) is commonly known as numer-
ical integration or quadrature. There are several motivations for performing numerical
integration
1. Tt is often the case that the integrand f(x) are only known at few points.
2. Not every integrand has an antiderivative that is an elementary function.
3. Even if an explicit antiderivative formula exists, it might not be the most efficient way of

computing the definite integral. This is the case when the antiderivative is given as an
infinite sum or product.

The simplest method for approximating (3.0.1) is as follows. Given an integrand f(z) on
[a,b], construct a family of approximating function (f,,),n = 1, where n refers to the number
of subintervals on [a, b]. Define

b
L) = 1) = [ fw)de (3.0.2)
and the error function
b
EA) = 15) = 1(7) = | [ (@)~ fula)] o (3.0.3)
In a relatively simple case, one usually requires that |f — f,[lc —> 0 as n — o0, since

b
E(f)] < f @) = ful@)de < (b— a)|f — fulo —> 0 a5 1 —> c0.

43
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3.1 The Trapezoidal and Simpson’s Rule

Most quadrature formulas are based on approximating f(x) with polynomial or piecewise poly-
nomial interpolation. We consider such cases with evenly spaced node points for the remaining
section.

3.1.1 Simple Trapezoidal Rule

We approximate the integrand f(x) using linear interpolation p;(x), this simply refers to the
straight line joining the points (a, f(a)) and (b, f(b)). Referring to the Lagrange’s formula
(2.1.4), we have the following approximation

f@) ~ p(x) = (ﬁ_b) fla) + (:”_a) f(p) = =@+ (2= a)J(b)

a—>b b—a b—a

This gives rise to the Simple Trapezoidal Rule

b - | (b —2)f(@) + (@ —a)f0)

b—a W= <b ; a) [f(a)+ f(b)],] (Simple Trapezoidal)

a

which is simply the area of trapezoid.

Error Analysis

To analyse the error, assume f € C?[a,b]. For a linear interpolant, the interpolation error
formula (IEF) from Theorem 2.1.4 gives

fla) - DL _ iy ) = (@ a)ta -

f"(€)
2

= (l’ - CL)(SE - b)f[a’v b,([}],

where f|a,b, x] is the second order divided difference. Since g(z) = (x —a)(z —b) < 0 on [a, b],
it follows from the Mean Value Theorem for Integrals that there exists an £ € [a, b] such
that

b

B = | 10) - mio)de = [ @~ a)(a ~ )lab.o)do

a

_ [f”én)}

Writing b — a as h, we have

Ei(f) = — {f’;(;)] h* for some 7 € [a, b). (3.1.1)
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Observe that the simple trapezoidal rule is exact for polynomials of degree at most 1. A bad
feature of the simple trapezoidal rule is that it does not serve as a good approximation to
oscillatory functions. For completeness, we include the proof of the mean value theorem for
integrals.

Theorem 3.1.1 (Mean Value Theorem For Integrals). Suppose f,g are continuous on [a,b]
and g does not change sign on [a,b]. There exists c € [a,b] such that

[ r@sterae =500 [ ot0) v

a

Proof. By Extreme Value Theorem, f attains its extremum, i.e. there exists zo < x; (WLOG)
such that

f(zo) =m = min f(x), f(r1)=M = min f(z).

z€[a,b] z€[a,b]

b
Consider the continuous function h(z) = f (SC)J g(s)ds on [a,b]. WLOG, suppose g is non-

a

negative on [a, b]. We have that

19(2) for all z € [a, b]
— h(xo) mf f fla f h(zy) for all z € [a,b].

It follows from the Intermediate Value Theorem that there exists an c € [a, b] such that

0= [ s e = 10 [ ot ar

3.1.2 Composite Trapezoidal Rule

If (b — a) is not sufficiently small, it follows from the previous error analysis that the simple
trapezoidal rule is not very useful. For such an integral, we subdivide the interval [a,b] into
n evenly spaced subintervals and apply (Simple Trapezoidal) onto each of these subintervals.
More precisely, for any n > 1, define

h—
h = a) xj=a+jh forj=0,1,...,n

Iﬂ=£}m

Then

> e

=1 J

<.

I
1=

NI@

fja) + f@)] =5 1" (nj)

h3

127\

= —
simple trapeZOIdal rule error

J

<.
Il
Jut
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50 s)

where n; € [x;_1,2;],j = 1,...,n. Denoting f;: f(x;),j = 0,...,n, the first sum is defined as
the Composite Trapezoidal Rule, given by

1 1
L(f)=nh (§f0 + i+ fot+. 4 faa+ §fn> ,n =1 (Composite Trapezoidal)

Error Analysis
Assume f € C?[a,b]. For the error in I,,(f),

E(f) = 1) — 1(f) =~ S i), (3.1.2)

i.e. the error consists of sum of local errors. One can obtain an average estimate for the sum
of local errors by looking at the global behaviour of the integrand f(z). Since f € C?[a,b],
f" € Cla,b] and it follows from the Extreme Value Theorem that

H%iri] () < f"(n;) < max f"(xz) foreach1<j<n. (3.1.3)
z€[a, z€[a,

Summing (3.1.3) from j = 1 to j = n and dividing by n yields

1 n
: // //
min " =E (n;) < max f"(x).

an<b a<z<b

It follows from the Intermediate Value Theorem that there exists 1 € [a, b] such that
1 n
// _
f"(n - 2

Thus, (3.1.2) reduces to

Z f"(n;) = —hl—2nf”(77) = — l%] h? for some n € [a,b].| (3.1.4)

We see that E,(f) = O(h?) as h —> 0. Observe that the composite trapezoidal rule is exact
if f is a polynomial of degree at most 1.

Remark 3.1.2. A similar argument produces another error estimate for the composite trape-
zoidal rule. Indeed,

n—0o0

n b
i Z2 g (Z f”(m)h> = o | e = S 1r0) - F@)

Riemann sum
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3.1.3 Simpson’s Rule

To improve upon the simple trapezoidal rule, we approximate the integrand f(x) using quadratic

interpolant po(z) instead. Since we require at least three interpolating nodes for quadratic in-

. : S a+b
terpolation, we choose the third node to be the midpoint ¢ = — Thus,

a—oa—t) 1
L(a—@m—mdx‘zmd
1

~ 22,
_1 (Zh
_2h2.)0
1 2h2 )
- — 3hy + 20| d
2h20[y 3hy + 2h7] dy

)

Repeating the same procedure, we obtain

a+b
2

L(f) = S:(f) = 2 [f(a) vaf (

- >+f@],h:b_a. (Simpson)

2

This is called the Simpson’s Rule.

Error Analysis

Assume f € C%a,b]. The interpolation error formula (IEF) from Theorem 2.1.4 gives

T

a

b
dzx

B - |

a

= J (I — a)(x - C)(% - b)f[a>b> 671:]7

a

where fla,b,c,z] is the third order divided difference. Ideally, we would like to use the mean
value theorem for integrals again, but it is not applicable here since g(x) = (r —a)(z —c)(z —b)

b
at . Define

changes sign at x = ¢ =

w(x) = J$(t —a)(t—c)(t —b)dt.
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Clearly, w(a) = 0 by construction. A symmetry argument (since ¢ is the midpoint between
a and b) shows that w(b) = 0, while a critical point argument shows that w(z) > 0 for all
x € (a,b). Now, integrating by parts gives

b

f (x —a)(x —c)(z —b)fla,b,c,x] dx = f w'(z) fla, b, ¢, ] dx

Z - wa(x) (%f[a,b, ¢, :1:]> dx

= — fbw(x)f[a, b,c,z, ] dr,

a

= [w(a:)f[a, b,c, x]]

where it can be shown using Lemma 2.2.2 that

i [x() T I~ x]:limf[x07mly---al‘nax+h]_f[x07x17"'7xnﬂl‘]
dm ) nsy h‘)O h
i flxo, z1, .- xn,x + h] — flz, o, 21, . . ., T0]
h—0 h
z’lliin0 [z, 20,21, ..., Zn, ¢+ h]
= f[xal‘())xlw"axnax]'

With g(z) = w(z) = 0 on [a,b], it follows from the Mean Value Theorem for Integrals
that there exists an £ € [a, b] such that

b
Ey(f) = —f w(z) fla,b,c,x, z] de

a

b

= —fla, b,c,f,f]f w(x) dx

a

B f(4)(77) 45 _b—a
= 51 15h , for some n € [a,b],h = 5
Hence,
(4)
Ey(f)=— <f9—(§77>> h®  for some n € [a, b]. (3.1.5)

Observe that Simpson’s rule is exact for polynomials of degree at most 3, even though quadratic
interpolation is exact for polynomial of degree at most 2. In essence, Simpson’s rule is much
more accurate than the trapezoidal rule.

3.1.4 Composite Simpson’s Rule

As before, the error analysis shows that Simpson’s rule is not so useful if h = b — a is not
sufficiently small. Following a similar idea to that used to derive the composite trapezoidal
rule (Composite Trapezoidal), we subdivide the interval [a,b] onto n evenly spaced subintervals
and apply (Simpson) onto each of these two successive subintervals. More precisely, for any
even integer n > 2, define

b—a

h

, xj=a+jh forj=0,1,...,n.
n
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Applying Simpson’s rule onto the subintervals [z;, x2¢+1)],7 = 0,1, ..., gives

=" e dx+f F(x)de + . J::Qf(x)dx

o
n—2
2 [T2j42
= f(z)da
j=0 v%2j
n—2
2 5
h R
= g[f(l"zj) +4f(22541) + f(a72j+2)] 90f (%)
J=0 1~ ~~ ~ ~~
simple trapezoidal rule error

This yields the Composite Simpson’s Rule

g[f(l"zj) +4f(z2541) + 2f(932j+2)]

0
g[f +A4f1i+2fo +4fs +2fs + .+2fn_2+4fn_1+fn]

(Composite Simpson)

Error Analysis

Similar to the composite trapezoidal rule, one can show that

En(f) = 1(f) = I(f) = = g_f(4)(77j) for some 7); € [, 23]
=0
By (2)
) (§> (ﬁ) Zof Y (ny)
hon
= —@f (n). for some 7 € [a, ]

Substituting n = (b — a)/h gives

Ry
E.(f)=—- [W] h*  for some 7 € [a, b].

(3.1.7)

Observe that the composite Simpson’s rule is exact for polynomials of degree at most 3.
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3.2 Note on Newton-Cotes Formulas

Given (n + 1) interpolation nodes, consider the interpolating polynomial p,(z) in Lagrange’s

form
n

pa(T) = Zli(x)f(lfi), where [;(x) = H

i=0 i

I—Ij

Approximating the integrand f(z) using p,(z) yields

ff d@wfpn dm_f (Zz )dx:;:;)Aif(:ci), (3.2.1)

where A;’s are called weights, having the form

b
A; = J li(z) dx.
For equally spaced nodes, (3.2.1) is called the Newton-Cotes formula or the Newton-
Cotes quadrature rules. The simple trapezoidal rule (Simple Trapezoidal) (n = 1) and
Simpson’s rule (Simpson) (n = 2) are two examples of the Newton-Cotes formula.

To estimate the error, we employ a similar argument as in Section 2.3. More precisely, if
|+ (z)| < M on [a,b], one has

r)dr — 2 Aif(z:)

_ f f:;++1 (H($_$i)> da
M b L M
< CE] <L H |z — $i|d$> = mﬁbn(m)-

3.2.1 Chebyshev Polynomials of Second Kind

Following Section 2.4, we can minimise the error bound for Newton-Cotes formula by choosing
the interpolation nodes to be roots of Chebyshev polynomials of the second kind. Let
Up(xz) = 1,Uy(x) = 2z and

Upi1(x) = 22U, (z) — Up—1(x), n=1. (3.2.2)
Observe that U, is a polynomial of degree n for each n > 0 and U,(z) = 2"2" + .... For
example,
Us(w) = 4a® — 1

Us(x) = 82° — 4x
Uy(z) = 162" — 1227 + 1.
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Lemma 3.2.1. For any x € [—1, 1], the Chebyshev polynomials of the second kind admits the

closed form expression

sin((n + 1) cos™(x))
sin(cos™! x)

Un(z) = ,n = 0. (3.2.3)

i 1
It follows that U, (cos(z)) = Mj)m,n > 0.
sin(x

Proof. The case n = 0,1 is trivial. For n > 2, we need to show that (3.2.3) coincides with the
recursive relation (3.2.2). [ |

It is clear from Lemma 3.2.1 that U, (z) has zeros at

Vs ‘
- 1<j<n. 3.2.4
T; = COS (n n 1) : j<n ( )

One can show a similar result to Theorem 2.4.4, namely ¢,,(x) is minimised if the interpolation
nodes {z; };‘:0 are chosen to be zeros of the Chebyshev polynomial of the second kind U,

given by
(j 1)” .
) ~ 0<ji<n. 3.2.5
x; COS< ) Jj<n ( )

This leads to

min ¢, (x) = Jb (ﬁ |z — x2|> drx = 2%
a \i=0

3.2.2 Midpoint Rule

There are Newton-Cotes formulas in which one of both of the endpoints of integration are

removed from the interpolation nodes. We approximate the integrand f using the constant

b
function f <%> and this leads to the Simple Midpoint Rule

L(f) = be (“;b) dz = (b—a)f (“;b) . (Simple Midpoint)

a

Error Analysis

b
Assume f € C?[a,b]. Denote ¢ = %. It follows from Taylor’s theorem that:

B = [ 1@ - s@ae = [ |06 -0+ Sl 02

a

for some &, € [a,b]. The first integral vanishes since the function x — ¢ is symmetric about the
point ¢ which is the midpoint of the interval [a,b]. For the second integral, since (z — ¢)? = 0
for all x € [a, b], it follows from the Mean Value Theorem for Integrals that there exists

an 7 € [a, b] such that:
b
J (x —c)*dx

B = [ (o (146 e (£00)

a
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_ <f”2<’7>) fh(y_hydx

0

_ <f”2(’7)) (%hg) where h = (¢ — a).

Consequently, the error is given by:

Eo(f) = ~——f"(n) for some 7 € [a, b]. (3.2.6)

3.2.3 Composite Midpoint Rule

We subdivide the interval into n evenly spaced subintervals and apply the (Simple Midpoint)
onto each of these subintervals. More precisely, for any given n > 1, define
b—a Tj-1 + X

, x;i=a+jh, j=0,1,....,n, ¢i=—"—= j=1,...,n.
n j J J g 9 J

B =

I

where ¢;’s are the midpoints of the subintervals [z;_1, x;]. Then
Z f f(z)dx
j=1Jzj-1
>3 (vt + 7))
j=1

where n; € [z;_1,2;],7 = 1,...,n. The first sum is defined as the Composite Midpoint
Rule, given by

b
1(f) = f f(z) dz

Tj-1 = X

L.(f) = h[f(c1) + f(c2) + ...+ f(cn)],n =1, where ¢; = 5

(Composite Midpoint)

A similar argument for the error analysis of composite trapezoidal rule shows that

E.(f) = mf”(n) for some 7 € [a, b]. (3.2.7)

Observe that the composite midpoint rule is exact for polynomials of degree at most 1.

Remark 3.2.2. Newton-Cotes formula has limited application due to failure of convergence
for some functions, where the problem arises from the assumption that the interpolation nodes
are uniformly spaced.

3.3 Gaussian Quadrature

The composite trapezoidal and Simpson’s rule are based on using a lower-order polynomial
approximation of the integrand on subintervals of decreasing size. Instead of approximating
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the integrand, we approximate the integral directly. Consider
n b
= > wif(x) ~ f w(z) f(z)de = I(f), (3.3.1)
j=1 @

where w(x) is the weight function that is nonnegative, integrable on [a, b], and satisfying the
following two properties:

J |z|"w(z) dx is integrable and finite for all n > 0,

2. If f w(z)g(x) dr = 0 for some nonnegative, continuous function g(x), then g(x) = 0 on

(a.b).
{z;}j_; and {w;}7_, are called the Gauss nodes and Gauss weight respectively. Note that
the Gauss weight w; should not be viewed as an approximation of the weight function w(x).

To gain some intuition behind the construction of Gaussian quadrature, let us choose w(z) =
1 and consider the integral over the interval [—1, 1]. More precisely, we consider the particular
case

1) = | f@)de~ D wif(e) = L0 (33.2)
Define the error function
Eu(H) = 1) = L(f) = | f(a)dw =D w,f (). (3.3.3)

The aim is to choose the Gauss nodes and weights such that E,(p) = 0 for all polynomials
p(z) of as large degree as possible. Suppose p(z) has the form

m
pla) = Dk = ap + ez + ..+ a7+ 4™ (3.3.4)
k=0

Expanding FE,(p) gives:

o

||
%

k=0

( x d:c) iak (i wjx§>

I MS I MS

n(a").

Since this must holds for any choice of ag, ay, . .., @, E,(p) = 0 for every polynomials of degree
< m if and only if
E,(1)=E,(z)=... = E,(2™) =0, (3.3.5)

and nodes and weights are found by solving (3.3.5). We present below how to find nodes and
weights for the case n = 1,2, and from there, deduce the equations for nodes and weights for
a general n > 1.
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1. Suppose n = 1.

1
f(z)dr ~ wy f(x1).
-1

Since we have two unknowns wy, z1, we require that F;(1) = F1(x) = 0. This gives
1
f ldxr = wy = wy = 2
-1
1
J zdr = wix, =28, = 21 =0.
-1

The Gaussian quadrature in this case corresponds to the simple midpoint rule (Simple Midpoint),
1.€.

1
f(x) dz ~ 2£(0),
—1
This is exact for polynomials of degree at most 1.

2. Suppose n = 2. Then

1
f(z)dr ~ wy f(x1) + wa f(22).
1

Since we have four unknowns wy, ws, Ty, T9, we require that Ey(1) = Ey(x) = Ey(x?) =
Ey(23) = 0. This yields

1
E,(z7) = f v/ dr — (w1r] + werd) =0, j=0,1,2,3,
-1

which gives four nonlinear equations

W1 + Wy = 2 (336&)

w1x1 + wexe = 0 (336b)
2

W TT + Wexh = 3 (3.3.6¢)

w4+ werhy = 0. (3.3.6d)

Taking advantage of the symmetry structure of (3.3.6), we look for solutions of the form
w; = Wy, I1 = —T3.
It follows from (3.3.6a) that w; = we = 1, and (3.3.6¢) gives

2 3
273 = = = xlzi%.

3

The Gaussian quadrature in this case has the form

jlf(a;) de ~ f (—?) + f (?) ,

and this is exact for polynomials of degree at most 3. This is better compared to Simpson’s
rule which uses three interpolation nodes.
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3. For a general n > 1, there are 2n unknowns and we require 2n equations given by

En(xk)zf xdm—ijJ =0,1,...,2n — 1.
-1
Exploiting the integral structure of monomials, the following 2n nonlinear equations are
obtained
n 0 it k=1,3,....2n—1,
ok
2 3.3.7
Z g —— ifk=0,2,....2n—2. (8:3.7)
= k+1

Theorem 3.3.1. For each n = 1, there is a unique quadrature formula L,(f) = Z w; f(x;) o

degree of precision (2n — 1). Assuming f € C*[a,b], we have

b n
| worste) s = Y wsstep + B, 339
where
( 2n) b
E.(f) [ ] f ¢*( x)dx  for some £ € (a,b),
< konly dep;;Lds on nJ (339)

q(x) H T = Tj).

The Gauss nodes {x;}7_, are zeros of ¢, (), where {¢,(x)} are orthogonal polynomials on [a, b]
with respect to the weighted inner product (-, )y, i.e.

\

b
(67, ) = f w(z)é;(@)dn(e) dz = 0 for any j + k.

a

Remark 3.3.2.

1. Examples of weight function with their respective orthogonal polynomials can be found
at the end of Section 2.5.

2. One can show that the Gauss weight has the form

w; = f w(@)[l;(2)]2 dz > 0,

a

where [;(z) are the Lagrange basis polynomials, j = 1,...,n [See (2.1.3)]. Thus, Gauss
Welghts are positive for all n > 1. Note also that

since the Gauss quadrature is exact for f(z) = 1.
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3. For integrals on an arbitrary but finite interval [a, b] with weight function w(z) = 1, one
can reduce the integral over [a, b] to the integral over [—1, 1] using the affine transforma-

tion Lbf(t)dt= (b;a) fllf(a+b+§(b_a)) .

Theorem 3.3.3. If f € C[a,b], then

n b
ijf(xj) —>J w(z)f(z)dr asn— o0.

Proof. WLOG, we may choose the interval to be [—1, 1]; otherwise we can rescale the function
using an affine transformation. Given ¢ > 0, it follows from the Weierstrass Approximation
Theorem that there exists a polynomial p(z) such that

|f(z) —p(z)] <e forall xe[-1,1].

Choose n > 1 sufficiently large such that 2n exceeds the degree of p. Then
n 1
> wiplas) = | wlalpla)da,
j=1 !
which leads to

_|_

Ugmm@m—zwﬂm

> wp(x;) — Z w; f(z;)

J=1

4ffmmwM—fy@www

< L w(@)|f(z) — p(z)| dz + Z wjlp(x;) — f(z;)]

J=1

< <flw(:c) da:) €+ (Ji wj> €
o ([ wtorr) =0 wn—n

since the weight function w(z) is assumed to be integrable. |

3.3.1 2/14/2017

) oo ime |20+ 1(1—m)!
f(eaqb) ;]fl Pl (COSQ)G ¢\/ A7 (l_|_m)|
oo o 20+ 1 (1 —m)!
f(97¢):;)fl Pl (COSQ>6 ¢\/ 47 (l+m)l
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3.4 Adaptive Quadrature

The idea of adaptive quadrature is largely motivated by the following question: Can we
minimise the computational cost/function evaluation such that the approximation is within a
given tolerance?

1. An important feature of composite quadrature rules is that of evenly spaced nodes, where
the intervals are subdivided uniformly until a desired accuracy is achieved. However,
this does not take into account the behaviour of the integrand, one example being the
magnitude of functional variations.

2. When the integrand is badly behaved at some point « over the interval of integration,
one requires sufficiently many nodes to compensate this. Consequently, this forces the
need to perform unnecessary computation over parts of [a, b] in which the function is well
behaved.

It is thus useful to introduce a quadrature rule that adjust its placement of nodes to reflect the
local behaviour of the integrand.

We illustrate the idea behind adaptive quadrature with an adaptive Simpson’s rule.
Consider an interval of integration [a, b] and denote h = (b — a)/2, it follows from (Simpson)
and (Composite Simpson) that

b h5
[ #0)d2 = Staasan 5550 (341
b R\° 1
f f(z)dr = S[a,a+h] + S[a+h,a+2h] -2 (§> %Jc(@ (n)
=S + S ! h5f<4>(~) (3.4.2)
= Pla,a+h] [a+h,a+2h] 16 \ 90 n e

Assuming f®(n) ~ f® (7)), subtracting (3.4.2) from (3.4.1) gives

15 [ h?
0= S[a7a+2h] - S[a,a+h] - S[a+h,a+2h] - < f(4) (77))

16 \ 90
15E[(3,)u+2h]
— B = i[s s -5 ]
[a,a+2h] 15 [a,a+2h) [a,a+h] [a+h,a+2h] |-
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Given a tolerance 7 > 0, if \E[(j)a +2h]| < 7, we apply the composite Simpson’s rule to ap-

proximate the integral. Otherwise, the subinterval is subdivided evenly and the composite
Simpson’s rule is applied on both halves separately. The new approximation is now tested

, where h is the length of the subinterval.

) ht
against the tolerance

(b—a)
Let’s combine

3.5 Singular Integrals

We are interested with two problems in this section:
1. Integrals whose integrands contain a singularity in the interval of integration,
2. Integrals with an infinite interval of integration.

By examining the nature of the singular behaviour of the integrand, it is usually possible to
derive a more rapidly convergent approximations.

3.5.1 Change of Variables

The idea is to transform the interval of integration in such a way that the new integrand is
sufficiently smooth near the singularity. For a finite interval of integration [a,b] containing
singularities, consider for example the following integral

b
I= J H@)
0 VT
where f € C"[a,b] for some n > 1. Let = u?, then dx = 2udu and I becomes
Vb
I= 2J f(u?) du.
0

The new integrands is now smooth and standard numerical quadrature can be applied to it.

For an infinite interval of integration, consider the following example

oe}
I= J Lf)dx, p>1, with lim f(x) exists .
. T

r—00

Assume f is smooth on [1,00). Performing a change of variable

Q@
du, o> 0.
(0%

This transforms the interval [1,00) to the interval [0, 1]. This leads to

! 1 du
I= e (=
ajo u f (uoc> ul-‘ra
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1
_ (p—1)a—1
aL f( )du

The goal now is to maximising the smoothness of the new integrand at v = 0, which can be
done by choosing « > 0 sufficiently large.

Example 3.5.1. Consider the integral

C @)
1 33\/>

Performing a change of variable x = 1/u?, one can show that

o () o

Assuming a behaviour of f(x) near z = oo

I =

f(x)—co+——|—?+

then
1
wf <—4> = cou+ cru® + cou’ + ...,
u

i.e. the new integrand is smooth at u = 0.

3.5.2 Analytic Treatment of Singularity

This method is common in PDEs and Harmonic Analysis, where the idea is to isolate the
singularity. As an example, consider the following integral:

b € b
I= L f(z)In(z) dx = fo f(z)In(z) dx + J f(z)In(x)de = I + L.

Assuming f(x) is smooth on [g,b], one can apply a standard numerical quadrature to approx-
imate I,. Near x = 0, assume [ has a convergent power series on [0,¢], i.e

w -
x) = Z a;x’.
=0

Substituting this into /; and integrating by parts gives

[1Jf ) In(z dx—f(ZaJaH)ln

S

where we use the following important fact to remove one of the boundary term:

lim #°In(z) =0 f 0.
Jim n(x) or (>
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Example 3.5.2. Consider the integral

Choosing € = 0.1, we obtain
0.1 4
L = f cos(z) In(x) dx, I, = J cos(x) In(x) dz.
0 0.1
One can show that I; is an alternating series, having the form
3

I=eline) ~ 1] - 5 (ln(e) _ %) T % (ln(s) - %) |

Since [; is a convergent power series, one can truncate /; to obtain an approximation to any
desired accuracy. For this particular case, since the terms in I; decays fast enough, the first
three terms are sufficient to give an accurate value of I;.
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3.6 Problems

1. Derive error estimate for the composite midpoint rule in the form

b—a)h?
M| ~ ( "
|E ] < TR |f"(x)]. (3.6.1)

The composite midpoint rule is given by

My (f) = blf (1) + f@2) + o+ flza)],
where h = (b — a)/n and

1
xj=a~|—<j—§>h, ]:1,,71

Solution: Assume f € C?[a,b]. Consider the case n = 1, i.e. the simple midpoint
rule. For this particular case, h = b — a and

M = 0-af (52) - w-ar (ar3).

h
Let ¢ =a + BL Taylor expand f(x) around x = ¢ gives

E{”:ff(x)dxf(bfa)f (m%)
- [ - s

2

a

_ fb [f'(c)(x—c)+m<x—c)2] dz  for some & € (a,b).

Observe that

[N

Jb(a;—c) dr = JCJF (x —c)dx =0,

a c—

NI

since the function x — ¢ is odd about the point x = c¢. So the first definite integral is
zero and we are left with

b
B <5 [ @Il e

a

.- <maX |f”(x)|) fb(x — Y dx

2 \ ze[a,b] a

Performing a change of variable y = z — a gives

(et [ (o) w= [ (-2)
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3.6. Problems

>

Wil

N
<
|
N | =
~_
w

o

RS AN A
S 3(\2 2
h3
T 12
Thus,
1 h3 (b—a)
EM| <= " L I "(g)]. 6.2
B < g (max @) (35) = U5t mex @l G62)
which matches with (3.6.1) since h = (b — a) in this case.

Denote the quadrature error for the simple midpoint rule over an interval [a,b] by
(EM) (a4 For a generaln > 1, h = (b—a)/n and

m=|[ bf(:v)dx—Mn(f)‘

:.ff@ﬁm—hﬁwﬁ+f@ﬁ+-u+f@w]

= La+h flx)de — hf(xy) + JH% f(z)dz — hf(z)

a+h

a+nh
+...+J flz)dx — hf(x,)

a+(n—1)h

M=

(E{\/I)[a+(jfl)h,a+jh]

1

<.
Il

NgE

< ’(E{\/I)[a+(j—1)h,a+jh]‘

h " ,
ﬂ (xe[a+(§ngli)}2’a+jh] f (I)) [frOm (3.6_2)]

ax | /()]

<.
Il
_

<

M:

<.
Il

3

2

>
3

<

=~

since [a+ (j — 1)h,a+ jh] < [a,b] for every j = 1,...,n. Substituting n = (b—a)/h
thus yields the desired error estimate (3.6.1).
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2. (a) Derive the two-point Gaussian quadrature formula for

1) - fo f)In (i) dr,

1
in which the weight function is w(z) = In <—)
x

Solution: Two-point Gaussian quadrature formula means we want to approxi-
mate I(f) as

I(f) ~ wi f(z1) + waf(x2).

Define the error function Ey(f) = I(f) —wy f(z1) —waf(z2). Since we have four
parameters wy, wy, T1, Ty, we impose Eo(1) = Ey(x) = Ey(2?) = Ey(2®) = 0.
This yields

, L 1 . .
E,(27) = f 2’ In <—) dr — wix] —wexh =0 for every j =0,1,2,3. (3.6.3)
0

T

For any n > 0, consider the following integral

! 1 ! 1
G, = f 2" In <—) dr = lim z" In (—) dz.
0 X b—0+t b X

Chain rule gives
A (Yo (Y (LY YL
dx v)) \1l/z)dx\z) ) oz
Integrating by parts gives
1 n+1 1 1 n+1
Jx”ln 1 dr = i In 1 —f i ! dx
b x n+1 x y Jp \nt1 x
prtl 1 I
In{ - "d
i (3)] o ) e
+1 1 1_bn+1
In( = -7
()] [

n —+
bTL
n -+

Using L’Hopital rule,
lim

1
n+11 Z) = 71 — | —~ 7
b0+ " <b> b0t 1 b0+ (_n + 1>

1 bn+2
= lim ( - =0, sincen = 0.
b—0+ \ b n+1
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3.6. Problems

On the other hand,
) 1— bn+1 1
lim

oot (n+ 12 (n+1)2

Thus,

! 1 1
= "In|—-)dr=+— > 0. 6.4
Gp L z" In (x) x CFE n=0 (3.6.4)

Now, using the identity (3.6.4) to expand (3.6.3) for each 7 = 0,1, 2, 3, we obtain
four nonlinear equations

wy +wy =1 (3.6.5a)
W1T] + Wely = i (3.6.5b)
w1 TT + Wwers = é (3.6.5¢)
w2 4 woxs = % (3.6.5d)

We decouple the system of nonlinear equations into two equations involving
w1, x1 and solve them using WolframAlpha. Let

1 /1 1 1
Wy = 1-— w1, T = w— (Z - wlxl) = 1 w (Z_l - w1$1) . (366)
2 — w1

Substituting (3.6.6) into (3.6.5¢) and (3.6.5d) yields

wi ] + ! 1—waz 2 —1
T \a 9
1

e (o)
wnmr] + /5 | T - ) =

(1—w)? \4 16’

which has two pairs of solutions (wq,x;) given by

9 5) 106
= — + )
14 42

1 9 5 106

Choosing the first set of solution w; = 5~ 2106, T = T + o we obtain
that

9 5 106

AV1060 2T 14 a2

wy = < +

N | —
N
[S—Y
(@]
(@)

—_

w2:1—w1=§+

Hence,

1
I(f) ~ 0.28151In ( ) +0.78151n <

0.6023 0.1120)
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(b) Show that there is no set of nodes x1, s, ..., z, and coefficients a1, as, ..., a, such
that the quadrature rule
n
Z ajf<xj)>
j=1

b
exactly equals to the integral J f(z)w(z) dx for all polynomials of degree less than

a
or equal to 2n. Here, w(z) is the weight function.

Solution: Suppose, by contradiction, that there exists a set of nodes z1, o, ..., z,
and Gauss weight aq, ae, ..., a, such that the Gauss quadrature is exact for all
polynomials of degree less than or equal to 2n, i.e.

Jb P(z)w(z)dx = Zn: a;P(x;) for all P(x) with deg(P) < 2n. (3.6.7)

a

b
Recall that the weight function w(x) satisfies the property that if J g(x)w(x)dr =

0 for some nonegative, continuous function g(z), then g(z) =0 on (a,b).

Consider the following polynomial

Ha:—xj (x —21)% (7 — 29)* ... (1 — 2)°

7=1
On one hand,

Zn:ajp(xj) =0, (3.6.8)

since {xq, 1, ...,x,} are zeros of p(x) by construction. On the other hand,

b
f p(x)w(x)dr # 0, (3.6.9)
since p is a nonnegative, continuous function and p is not identically equal to
zero on (a, b); this follows from the assumption we impose on the weight function
w(x) (See above). Comparing (3.6.8) and (3.6.9), we see that this contradicts
(3.6.7) since p is of degree 2n.

Remark: The fact that p(x) does not change sign is crucial here in order to use
the assumption about w(x). Otherwise, we can lower the degree of p(x) and
conclude that the Gauss quadrature with n nodes and n weight cannot be exact
for all polynomials of degree less than 2n — 1, contradicting Theorem 3.5.1.

3. Consider the following three methods

(a) the trapezoidal rule with n subdivisions;
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(b) Simpson’s rule with n subdivisions;

(c) the “corrected trapezoidal rule” with n subdivisions,

P 1 B2
n = <§f0+f1+-~-+fn—1+§fn)_E[f( ) — f(a)].

Using these methods to compute the following integrals:

1 21
I:Jem%u,fzj e
0 o 2+ cos(x)

Analyse empirically the rate of convergence of I, to I by calculating
IZn - In

_—. 3.6.10
I4n - IZn ( )

Solution: We compute the derivative of the integrand since this is required in
the “corrected trapezoidal rule”.

d 2
%(e’x ) = —2xe”

x2

Z%(2+;q@):(2fiimy'

The remaining discussion concerning (3.6.10) is adopted from Atkinson’s book.
For simplicity, let us denote the ratio (3.6.10) by J,. Suppose the numerical
quadrature has an asymptotic error formula of the form

C
I —1I,=—, forsome constant C" and p > 0. (3.6.11)
n

Substituting this into J,, yields

1 1 (4n)?  (4n)?
I - (I-1,)— (-1, _onw (2n)p (2n)p
b= I) = (I L) 11 (4n)?  (4n)?
(2n)p (4n)P (2n)p  (4n)P
4 op
w1
w(r—1)
T Twor

If the asymptotic error formula (3.6.11) is actually valid, then the rate of con-
vergence of the numerical quadrature I, is directly proportional to J, since p
increases as J,, increases, i.e. large magnitude of J,, corresponds to fast conver-
gence of I,.

We present, in tables, the numerical results J,, and the number of steps required
to converge to the numerical solution for each quadrature rule. We measure the
difference between succesive numerical solutions and say that the quadrature
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rule converges if the difference is less than 1071¢ in absolute value. Note that
for a given n, I, has to be evaluated for trapezoidal and corrected trapezoidal
rule, while Ig, has to evaluated for Simpson’s rule since Simpson’s rule can only

be applied for even number of subintervals.

n Trapezoidal Corrected trapezoidal | n/2 Simpson

10 | 4.001249076550956 | 15.993888726363565 | 10 | 15.992355020559598
20 | 4.000312442895004 | 15.998500426033873 | 20 | 15.998120214869884
30 | 4.000138877400072 | 15.999262560132889 | 30 | 15.999315115814516
40 | 4.000078121145502 | 15.999468365365903 | 40 | 15.999117119340783
50 | 4.000049998387922 | 15.999611778748653 | 50 | 15.998586261240382
60 | 4.000034723577809 | 16.002523613814983 | 60 | 15.995723620987892
70 | 4.000025510370252 | 16.000756867459152 | 70 | 16.001157613535174
80 | 4.000019531834193 | 16.001139298192314 | 80 | 16.013529948312556

Table 3.1: J, for the first integral, with integrand e=*".

n Trapezoidal | Corrected trapezoidal | n/2 Simpson

10 | 5.2418663x 10° 5.2418663x 10° 10 | 5.2422671x10°
20 | 2.97295x10% 2.97295x 104 20 o0

30 2 2 30 -2

40 1 1 40 0

50 -3 -3 50 -0.6

60 -0.2 -0.2 60 0.6666667

Table 3.2: J, for the second integral, with integrand (2 + cos(z))~*.

Trapezoidal | Corrected trapezoidal Simpson
1st integral 23844 356 307
Numerical solution | 0.7468241327 0.7468241328 0.7468241328
2nd integral 33 33 28
Numerical solution | 3.6275987285 3.6275987285 3.6275987285

Table 3.3: Number of steps required for convergence and numerical solutions.
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3.6. Problems

We see that for the first integral, the asymptotic error of trapezoidal rule behaves
like O(h?), while corrected trapezoidal and Simpson’s rule both behave like
O(h*). For the second integral, all three quadrature rules converges rapidly,
with error behaving like O(log,(5.24 x 10°%)).

(d) Derive the “corrected trapezoidal rule” formula given in part (c).

Solution: Assume f € C?[a,b] and denote f; = f(z;),j7 = 0,1,...,n. The
Mean Value Theorem asserts that for every j = 1,...,n, there exists an
& € (zj_1, ;) such that

f'(zy) = f'(z5-1)

.CEJ' — .CCj,l

= (&) = hf"(&) = f(x;) — [(xi).

Hence,

n n 3
I(f) = >, (g[fj—1 + fj]) -2 %fﬂ(%‘) for some n; € [x;_1, ;]
=1

~
Composite trapezoidal rule  Sum of local errors

- (U + ) = XG50 — 1760 + £76)

_ 2 (g[fjl . fj]) - 2 ’f—z[hf”@] —g’j—g[f"m — ()]

:2 (305 + 1) - 2 PP @) = Py -3 ")~ 1)

:2 (30 + £1) = 07 ) = 7o) - ) P 1) - (&)

=h (g St e gh) = O - S0 X 500 - 1)

Corrected trapezoidal rule

Truncating the second sum yields the “corrected trapezoidal rule”.




Chapter 4

Numerical Methods for ODEs

We are interested in numerically solving general initial value problems (IVP), having the

form
yl = f(l’, y),
{ yaw) = Yo (VE)

The function f(x,y) is assumed to be continuous in some domain D of the zy-plane and
(.To, Yb) eD.
Definition 4.0.1. We say that a function Y'(z) is a solution on D of (IVP) if for all x € D,
1. (z,Y(x)) e D,
2. Y(l’o) = Yb,

3. Y'(z) exists and Y'(x) = f(z, Y (2)).

Example 4.0.2. Consider the first-order ODE of the form

Y =Xy +g(x), y(0)=Yp,

where g € C[0,00). Using the method of integrating factors, one can show that the solution
has the form

Y (z) = Ype +J A Dg(t)dt, e [0,0).
0

4.1 Existence, Uniqueness and Stability Theory
One should always ensure that the problem is well-posed before even attempting to solve

(IVP) numerically, i.e. a unique solution exists and the solution is stable with respect to small
perturbation of initial data.

69
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Theorem 4.1.1 (Local Existence). Assume f € C(D), (xo,Ys) € D, and f(x,y) satisfies the
Lipschitz condition, i.e. there exists an K = 0 such that

|f(x,y1) - f(x7y2>| < K|y1 - y2‘ fOT’ all <I7y1)7 <x7y2> eD.

Then for a suitably chosen interval I =[xy — «, xg + «, there is a unique solution Y (x) on I
of (IVP).

of (z,y)

Remark 4.1.2. If ——= exists and is bounded on D, it follows from the mean value theorem

0y
that f(z,y) satisfies the Lipschitz condition with Lipschitz constant

W@w‘
dy |

Note that this is a stronger assumption since Lipschitz functions might not be differentiable
(although Lipschitz functions are differentiable almost everywhere by Rademacher’s theorem).

Example 4.1.3. Consider the initial value problem y' = 1 + sin(zy) on
D = {(z,y) e R*: x € [0,1],y € R}.

Computing the partial derivative of f with respect to y gives

of(x,y) B of (z,y)
o zrcos(zy) = K = (ﬁ?fp o

-1

Thus for any initial data (zq, Yy) with zo € (0, 1), there exists a unique solution Y (z) on some
interval [z — a, 29 + o] < [0, 1].

We now turn to stability of (IVP), in which we want to see how the solution changes when
we perturbs the initial data or the function f(z,y) (with respect to x).

Theorem 4.1.4 (Stability). Consider the perturbed problem of the original problem (IVP)

! = )
y f(@,y) +6(x), (IVP.)
y(rg) =Yy+e.
Assume that
1. f(x,y) satisfies the condition of Theorem 4.1.1,

2. §(x) is continuous for all x such that (z,y) € D.

Then there ezists a unique solution Y (z;9,¢) of (IVP.) on an interval [zo— «, xo+ ] for some
a > 0, uniformly for all perturbations € and §(x) satisfying

lel < 0, [0]eo < 0,
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for some sufficiently small eq > 0. Moreover, if Y (z) is the solution of the unperturbed problem
(IVP), then we have the following stability estimate:

Jmax Y (z) = Y(x;0,¢)] < Clle| + d] ], (4.1.1)
T—To |

1 . .
where C' = ———— K the Lipschitz constant of f(x,y).

1—aK

Remark 4.1.5. We say that (IVP) is well-posed or stable in the sense of Theorem 4.1.4, i.e.
the solution Y (z) depends continuously on the data of the problem, namely the function f and
initial condition Yy. Note that it is possible for (IVP) to be stable but ill-conditioned with
respect to numerical computation, since the constant C' can be really large!

For the sake of illustration, we consider only perturbations ¢ in the initial condition Yj. Let
Y (z;¢) be the solution to this particular perturbed problem. It satisfies

Y'(z;e) = f(x,Y(x;¢)) onx€[rg— a,zo+ a, (41.2)
Y(zg;e) =Yy + €. o
Denote Z(x;e) = Y (z;¢) — Y(x), subtracting (IVP) from (4.1.2) gives
Z'(ze) = f(2,Y(x;9)) = f(2,Y(2)),
{ e e (4.1.3)

If Y(z;¢) is sufficiently close to Y (z) for small values of €, then we can approximate the RHS
of (4.1.3) by its first order Taylor expansion of f with respect to the second variable, which
gives

f@, Y (x;€)) = fla,Y(2)) ~» ——2 20

Thus, (4.1.3) reduces to a separable ODE and it has an explicit solution of the form

Z(w:€) ~ cexp (f wcﬂt) |

o

o (LY (1)

Clearly, the behaviour of the perturbed problem depends on the sign and magnitude of p
)

For a problem to be well-conditioned, we require the integral

r oft,YR) .,
dy

on |z — x| < a,
zo

to be bounded from above by zero or a small positive number, as x increases. Consequently,
the perturbation Z(x;¢) will be bounded by some small constant times ¢.

Example 4.1.6. The initial value problem

Yy = 100y — 101e™7,
y(0) =1,
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has solution Y (x) = e~*. The perturbed problem

Yy = 100y — 101e~?,
y(0) =1+e¢,

has solution Y (z;e) = e + €e'%%. Tt is clear that Y (z;¢) diverges rapidly from Y (z) as =
increases. Such problem is said to be ill-conditioned.

In the special case where

oft,Y(t))
dy

<0 on |t — x| < a,

the perturbation Z(x;¢) probably remains bounded by ¢ as = increases; the unperturbed prob-
lem (IVP) is said to be well-conditioned. If; in addition, the partial derivative has large mag-
nitude, we see that Z(z;e) — 0 rapidly as x increases. Unfortunately, numerical methods
might fail to capture the rapid decaying behaviour of Z(x;e¢), it is as if we are solving
the unperturbed problem since Z(x;¢) is almost negligible. Such problems are still said to be

well-conditioned, but it can be a challenging task for many numerical methods; they are known
as stiff DEs.

4.2 Euler’s Method

In practice, we construct simplified models to obtain qualitative approximations of real-world
models that are difficult to solve analytically, but in many cases even these simplified models
are difficult or impossible to solve either explicitly or implicitly. Thus, it is important in having
numerical methods to numerically approximate the true solution.

We begin with Euler’s method which is a first-order numerical scheme for solving (IVP),
and it often serves as the basis for constructing complex numerical methods. Consider solving
the initial value problem (IVP) on the finite interval [a, b]. For simplicity, suppose we have a
uniform spaced grid nodes

a=2)0<T1<Ty<...<xy=D,

where the nodes are given by x, = zo + jh,7 = 0,1,.... Denote N(h) to be the largest index
N > 0 such that
ry <b and xzy. >0

As before, Y (x,,) is the true solution at x,, and y,(x,) = y, the approximate solution at z,,.

4.2.1 Derivation

Euler’s method is defined as follows

Yn+1l = Yn + hf(-Tnvyn)? n = 07 17 27 ° 099 with Yo = }/O (Elﬂer)

Below are four possible derivations of Euler’s method.
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1. Finite difference approximation. Using definition of a derivative,

Y/(z) = }111_{% Y(z+ h})l —Y(x) N Y(z+ hf)L — Y(x)

Since Y'(z,,) = f(x, Y (z,)), we have

Y(#ni) = V(@)
h

~ f(.’[‘n, Y(In)>7

and rearranging gives Y (x, 1) ~ Y (z,) + hf(z,, Y (2,)).

2. Tangent line approximation. Geometrically, we approximate Y (x,.1) by extending
tangent line at x,,. In point-slope form, we have

Y(xpi1) — Y(xy,)

; ~ Y’(xn) = f(xn, Y (x,)).

Iterating this over each interval [z, z1], [1, Z2], . .. gives (Euler)

3. Taylor series expansion. Expanding Y (z,41) about z,, gives

h2
Y(xn+1) = Y($n> + hY/(xn) + EY”(gn) for some gn € [xnaanrl]'

h2
(Euler) is obtained by dropping the error term T,, = ?Y” (&) which is also called the

local truncation error at z,,1.

4. Numerical integration. Integrating the ODE over [x,,, x,,1] gives

f Y'(t) dt — J "y @)

Tn In
Tn+1

= Y(rp1) = Y(x,) +J f(t,Y(t))dt.

Tn

Different choices of quadrature rules on the RHS yields different numerical method, and
(Euler) is obtained by approximating the integral using the left-hand rectangular rule,
1.€.

f TR Y (@) dt = (e — 20)f (00, Y (20)) = hf (2 Y ().

Tn

Remark 4.2.1. One obtain the midpoint method if we use the simple midpoint rule
(Simple Midpoint).
Yn+1 = Yn—1 + 2hf(xn7yn>7 n =1

Example 4.2.2. Consider the initial value problem

{y%x) = —y(2),
y(0) =1
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[ts unique solution is Y (x) = e™*. Applying (Euler) to the IVP with the choice of step size
h = 0.1, we get

Yo=1,91=yo— hyo=109
Y2 = 1 — hyr = 0.81.

We can compute the error explicitly since we have an explicit solution.

Y(z1) —y = e %' — 0.9 ~ 0.004837
Y (z3) — o = ¢ *? — 0.81 ~ 0.001873.

4.2.2 Convergence Analysis

Despite its simplicity, does Euler’s method in any meaningful sense provide approximations to
the true solution of (IVP)? Intuitively, the local truncation error in Euler’s method (error at
any given steps) is of order O(h?), but since we need to take O(1/h) steps to reach some fi-
nite z, we expect the global error (error at a given time step) in Euler’s method is of order O(h).

Remark 4.2.3. The local truncation error is defined to be the error at any given steps,
assuming there is no error in the previous step. The global (truncation) error is defined to
be the error at any given time step; it consists of error propagated from all the previous steps
along with error generated in the current step. We can think of global error as cumulative
error produced by approximate solutions.

Example 4.2.4. Consider the initial value problem

Its unique solution is Y (z) = x?. The global error of Euler’s method can be analysed directly
here. Since yo = 0 and
Yn+1 = Yn + 2hxy, T, = nh,

we have
y1 =0+ Qh(O) =0
Yo = 0 + Qh(l’l) = T1T2
Y3 = 122 + 2h(x9) = w913
Yy = Toxg + 2h(x3) = T374.

We now show that vy, = x,_12,,n > 1 using method of induction. The base case n = 1 is
trivial. Suppose y,, = r,_12, holds, then

Ynt1 = Tn1Tn + 2h(2,) = 2n(Tp1 + 2h) = 2p20 41

Thus,
Y(I‘n) —Yn = 17721 — TpTp-1 = (l'n)(l'n - xn—l) = hx,,
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and we see that the global error at each fixed value z,, is proportional to hA. This is not sur-
prising, since the global error is the sum of local truncation error and n is proportional to h itself.

The standard approach behind almost every convergence proof of a numerical scheme is
to write an equation for the error and then use a Gronwall-type argument to estimate the
magnitude of the solution. We state a relatively simple but extremely useful lemma in the
analysis of finite difference methods.

Lemma 4.2.5. For any x € R,
e >1+uz,

and for any v = —1,
0<(1+xz)™<em.

Proof. The first inequality can be easily seen by applying Taylor’s theorem on e*. Indeed,

2
X
€x=1+$+56£,

for some £ in between 0 and x. |

Unless stated otherwise, we will now assume that the function f(x,y) satisfies the stronger
Lipschitz condition, i.e. the following holds for any y;,y2 € R, x € [z, b]:

|f(z,y1) = f(z,92)| < K|y — yo|. (4.2.1)

This will simplify the remaining discussion. If the function f satisfies the Lipschitz condition,
f can be modified in such a way that the intrinsic property of (IVP) and its true solution Y (z)
remain unchanged, but f now satisfies the stronger Lipschitz condition.

Theorem 4.2.6. Assume that the true solution Y (x) of (IVP) has a bounded second derivative
on [xo,b]. Then the approximate solution {yn(z,): x, € [To,b]} obtained by Euler’s method
satisfies the following pointwise error estimate:

max |Y(z,) — yn(z,)] < e(b_xO)K|eo| +
Tn€[z0,b]

[“za))%] T(hz | (4.2.2)

~
error generated by Fuler’s method

where h
7(h) = §HY”Hoo and ey = Yy — yn(xo).

If in addition,
leo] < Cih as h — 0,

for some constant Cy = 0, then there exists a constant B = 0 for which

max |Y (z,) — yn(z,)| < Bh. (4.2.3)

Tn€[zo,b]
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Proof. Define e,, =Y (z,) — yn(x,),n = 0 and

T = gY”(fn), 0<n<N(h) -1,

Clearly,

. h "
max || < 7(h) = SV

Denote Y,, = Y (z,). To derive the error equation, we first expand Y, 1 about point z, which
yields

h2
Vo1 = Yo+ hf(x,, Ya) + EY”(gn) =Y, + hf(z,,Y,) + h7,. (4.2.4)

Subtracting the Euler’s method from (4.2.4), we have that

€n+l = €p + h[f(xm Yn) - f(xna yn)] + th‘

Using the strong Lipschitz condition of f(z,y), for every 0 < n < N(h) — 1 we have

< ‘€n| + h’f(xmyn - f(xnvyn” + h’Tn|
< |6n| + hK|Yn - yn| + h|Tn|
< (1 + hK)l|e,| + h7(h).

‘€n+1|

Iterating this inequality gives,

len] < (1+ hK)[(1+ hK)|e,—1| + hr(h)] + h7(h)

< (1+ hK)"|eo| + [1 + A+ hE)+ (1 +hE)? ...+ (1+ hK)"—l] hr(h).

. J/

~
geometric series

Summing the geometric series and using Lemma 4.2.5, we have

len] < (14 hE)"es| + l(l i f;f() - 1} W (h)

6nhK -1
< e’n,hK|€0| + (T) T(h)

(Tn—z0)K __ 1
- e
= elan U)K]eo\ + ( - ) 7(h)

(b—z0)K __ 1
< 6(b—zo)K|60| + (eT) T(h)

Taking the maximum over all x,, € [x¢,b] yields the error estimate (4.2.2). To obtain (4.2.3),
simply set

B = Celt—#0)K | (e(be)K - 1) HY””oo'

K 2
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4.2.3 Stability Analysis

Following a similar idea from the stability analysis of (IVP), we consider the following perturbed
numerical scheme

(4.2.5)
20 =Yy tE.

{ Zni1 = 2Zn + Alf (T, 20) + 0(24)]

for 0 < n < N(h) — 1. We want to compare these numerical solutions {y,}, {z,} as h — 0.
Let e, = z, — yn, then ey = ¢ and

€ntl = €p T h[f(xm Zn) - f(xna yn)] + hé(l’n)

It follows from Theorem 4.2.6 that

® K 6(bfmo)K -1 5 A
n— Un| < V770 _ 2.6
ol < € 4 (S ol (426

< Kile| + Ky 0]|or,

where K, Ky > 0 are constants independent of the step size h. Observe that (4.2.6) is analo-
gous to the stability estimate (4.1.1) for the continuous IVP, and it says that Euler’s method
is a stable approximation scheme for the true solution of (IVP). Note that the imitation of
such stability estimate is something we want from all numerical methods.

4.3 Taylor’s Method

Euler’s method belongs to the more general class of single-step methods, where the numerical
scheme only requires knowledge of the numerical solution ¥, to determine y,,,;. To improve
the order of convergence, we seek for approximations that are more accurate and one choice is
simply extending Euler’s method by considering higher-order Taylor expansions. We present
the mechanism behind Taylor’s method with the following example.

Example 4.3.1. Consider the initial value problem

y'(x) = —ylx)+2cos(x),
y(0) =1
Its unique solution is given by Y (z) = sin(x) + cos(z) € C*. Consider the second-order Taylor
expansion of Y (z,41) around x,:
3

2
Y (2pi1) = Y(zn) + AY'(2,) + %Y”(mn) + %Y(?’) (&), &n € [Zn, Tny1). (4.3.1)

Computing Y'(z,,) and Y"(x,) gives

Y'(zn) = =Y (x,) + 2 cos(z,,)
Y'(x,) = =Y'(x,) — 2sin(z,) = Y(x,) — 2cos(x,) — 2sin(z,).
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Setting Y (x,) = y,, substituting these expressions into (4.3.1) and dropping the truncation
error, we obtain

2
Ynt1 = Yn + h[—yn + 2cos(z,)] + E[yn — 2cos(z,) — 2sin(z,)].

Since the local truncation error is of order h3, we expect this numerical method to be more

accurate than Euler’s method.

To solve (IVP) on the interval [z, b] using Taylor’s method, we choose an order p > 1
where p is such that the true solution Y (z) € C®*V[zy,b] and approximate Y (x, 1) with its
pth-order Taylor expansion around x,,:

hP
Y (Tpi1) ~ Y(zn) + AY (2,) + ... + EY@) (), (Taylor)

with the local truncation error

hp+1
Y(P“)(gn), for some &, € [z, Tpi1].

T,
(p+1)!

The remaining task is to find higher order derivatives of Y and express them in terms of higher
order derivatives of f(x,,Y (x,)).

Remark 4.3.2. If the solution Y (x) and f(z,Y (x)) are sufficiently differentiable, then we can
show that Taylor’s method satisfies the error estimate

_ < P (p+1)
JJax ¥ (an) — yn(za)| < CB7 max [YF(x)] (4.3.2)
Taylor’s method can be viewed as a simple and accurate numerical method, but it requires
computing derivatives of f(x,y) which can be very difficult and time-consuming, not to men-
tion the regularity assumption of Y (x) and f(z,vy).

4.4 Runge-Kutta Method

Using symbolic manipulation on a computer, the Taylor’s method can be easily produced.
Nonetheless, the derivatives are still likely to be quite time-consuming to evaluate. We would
like to develop higher order numerical methods that avoid the need to compute higher order
derivatives, while mantaining the accuracy of Taylor’s method. This is precisely the main idea
behind the Runge-Kutta (RK) methods, where it evaluates f(z,y) at more points to “recover”
the desired accuracy. All RK methods can be written in the general form:

Ynt+1l = Yn + hF(xnayn; h>7 n = 07 Yo = }/0 (441)

Intuitively, F'(x,,y,;h) is interpreted as some kind of “average slope” on the interval [z,,, z,41].
As pointed out above, F'(x,,y,;h) is constructed so that (4.4.1) behaves like a higher order
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Taylor’s method.

To gain some insights on how to derive higher order RK methods, we first illustrate the
derivation of a family of RK methods of order 2 (RK2). We suppose F' has the general form

F(z,y;h) = if(2,y) + v f(z + ah,y + Bhf(z,y)), (4.4.2)

where 71,72, a, § are chosen such that when we substitute Y (x) into (4.4.1), the local truncation
error

To(h) ==Y (2ns1) — [V (2n) + hF (20, Y (20): )] = O(R®). (4.4.3)

To achieve (4.4.3), we consider the third-order Taylor expansion of Y (x,,;) around z, and
the second-order Taylor expansion of f(x, + ah,y, + Bf(zn,yn)) around (z,,y,). Denote
Y (x,) =Y,. Computing these expansion yields

h? h3
Yii1 =Y, + WY, + 33/,;’ + EY,F’) + O(hY). (4.4.4)

f(@n + ah,yn + Bf (20, yn))
= [+ [ahfs + BRff,] + % [(ah)? foo + (@) (BRS) foy + (BRF)(h) fyo + (BRS)? fyy] + O(R?)

= f+hlaf, + Bff,] + 1 Go?fm + B f fay + %Bzﬁfyy) + O(h?). (4.4.5)

Using Y, = f(z,, Y,), we have

Vi=fot fyYo=Ffot fuf (4.4.6)
Y = fou+ [V + (£)) f + fuf
= fou + fzyf + [fyw + fyyyﬂf + fy[fw + nyr;]
= foa + fayf + [fya + fou F1f + LS + £y f]
:fwx+2fxyf+fyyf2+fyf$+f5f- (4.4.7)

Substituting (4.4.4), (4.4.5), (4.4.6), (4.4.7) into (4.4.3) and collecting common powers of h
gives:
2

R, h
To(h) = WY, + Y+ Y+ O(h') = h| 31 f (20, Yo) + 7f (00 + ah, Yo + Bhf (2, Y0) |

= h[l M —72]f+h2 [(% —7204) Jo + (% —725) fyf}

(T )

1 1 1 1
+ (6 - 57252) fyyf2 + gfyfm + Ef;f] + O(h4):

3

where f and all its partial derivatives are evaluated at (x,,Y,). The coefficient of h® cannot
be zero in general, if f is allowed to vary arbitrarily. Setting the coefficients of A and h? to be

7Zero gives
1

1
Nntr=1 na= > Yol = 3 (4.4.8)
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The nonlinear system (4.4.8) is underdetermined, and its general solution is given by

1
N=1-7%, a=p= 2 (4.4.9)

where 7, is a free parameter and v, # 0, since otherwise we would recover Euler’'s method. We

13
require « € [0, 1] so that z,, + ah € [z, x,.1]. Three typical choices are vo = 7 1. With
1
Y2 = 2
1
F(@n,yuih) = 5| £ s )+ f @+ b + 0 f (s yn))|
and we obtain one of the possible RK2 method:
h
Ynt1 = Yn + 5[]0(1:717 yn) + f(xn—i-la Yn + hf(xm yn))] (RKZ)

(RK2) is sometimes called a two-stage method.

Higher-order RK methods can be generated in a similar fashion, but the algebra becomes
very tedious. Let p = 1 be the number of evaluations of f(x,y). We assume F' has the general
formula

p
F(xmyn; h) = Z YiUj, where U1 = f(xmyn)

j=1

j—1
Uj =f (Z‘n‘i‘ajh;yn'f‘hZiji), j=2,...,p.

i=1

A popular classical method is the fourth order RK method

(v = f(Zn,Un)
Y
h h
)\ (% = f Tn + =5 Yn + V2 (RK4)
2 2
vy = f(zn + h,yn + hvs)
h
L Yntl = Yn + 6(1)1 + 21]2 + 21}3 + U4).

It can be shown that the local truncation error for (RK4) is of order O(h®). If ¢ = f(z), then
(RK4) simplifies to

Yn+1 = Yn + g [f(sm) +4f (x + g) + flon + h)] ,

i.e. (RK4) reduces to (Simpson) rule for the integral on [z, T,41].
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Remark 4.4.1. If the true solution Y (x) of (IVP) and f(z, Y (z)) are sufficiently differentiable,
then the RK method has local truncation error of order O(h?™!) and

max |Y(z,) — yn(z,)| < CRP.

TOSTn Sb

There is a relationship between p and the maximum possible order for the local truncation
error T, (h):

Number of function evaluations (stages) |12 |3 4|56 |78
Maximum order of method 1123144566

4.5 Multistep Methods

All the numerical methods we encountered so far are single-step methods. RK methods only
requires y, to compute y,.1, it does however invoke a series of intermediate values during the
computation. Multistep methods use the previous p step values to approximate the solution
at the next step and in the case of linear multistep methods, a linear combination of the
previous points and derivative values is used.

For the sake of convenience, denote f(x,,y,) = v/'(z,) = y,. Consider solving (IVP) on the
interval [xg, b] and assume that the problem is well-posed. The general form of linear multistep
methods is:

p p
Yt = D Qg+ D b (TasiiYnss), Tpet < Tpp1 <b, m=p =0, (LMM)
j=0 Jj=-1
where the coefficients ay,...,a, and b_y,by,...,b, are constants. This is the (p + 1)-step
method if a, # 0 or b, # 0 and ¥, ...,y, must be obtained separately, usually using lower-

order methods. If b_; = 0, we have an explicit method, such as the forward Euler method; if
b_1 # 0, we have an implicit method, such the backward Euler method.
Denote Y (z,,) = Y,,. Integrating Y’ = f(z,Y") over the interval [z,, Z,,1] gives

f " Y e) do = f+ flo, Y (2)) de

Tn In
Tn+4+1

— Y, — Y, = J fz,Y(x))dz.

Tn

Adams methods arise when we approximate the integral by replacing the integrand g(x) =
f(z,Y (x)) with interpolating polynomials.

4.5.1 Adams-Bashforth (AB) Methods

Fix an integer ¢ = 0 corresponding to the degree of interpolating polynomial, and consider the
set of interpolation nodes {®,_q, Tn_g+1,- ., Tn_1,Zn}. From Theorem 2.1.4, it follows that for
some &, € [Tp_q, Tni1] We have

(x —Zp_g)(® — Tp_gi1) ... (x — xp)

T (&)

g(x) = py(z) +
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yle+2) (¢, d
= pq(x) + TS!) (H(ﬂﬂ - xn_q+j)>,

J=0
- _
~~

local truncation error

provided Y € C*¥ [z, . x,.1]. Recall that g(z,) = f(z,, Y (v,)) = Y'(x,) =Y,

n

1. Suppose g = 0. The interpolating node is x,, and we have that

po(x) = g(n).

Computing the integral gives

Tn+1 Tn+1
j g@wm~f g(en) dx = hy(z,) = WY,

In In

with local truncation error

Tn+1

1,0 = Y"(6) | @ -z do = Y6,

Tn

Dropping T, (h), we obtain the 1-step AB method of order 1 which is just the for-
ward /explicit Euler method:

Yni1 = Yn + hyl,, n=0. (AB1)

It turns out that forward Euler method is stable if the step size h is sufficiently small.

2. Suppose g = 1. The interpolating nodes are {x,_1,z,} and we have that

(x - xn)

plo) = an+ﬁ:ﬂﬁﬂ%>

Tp—1 — Tn (SL’n - x”—1>

_ %[(xn — 2)g(zn1) + (z — xnfl)g(l‘n)}

Computing the integral gives

T +1 Tn+1 Tn41
J g(z)dx ~ 9(&n-1) (xp, —x)dx + MJ (x — xp_q)dx

9@\ (P N g(zn)\ [ 4h* — h?
B h 2 h 2
3h h
= 79(%) — 59(%_1)
_ Sy By
2 2

with the local truncation error

Tn(h) _ Y(?’)Q(gn) Jr,ﬁl (m B xn_l)(x B J}n) dr — %hiiy(?)) (fn)

Tn
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Dropping T),(h), we obtain the 2-step AB method:

h
Yn+l = Yn + 5[3%/1 = y;,l], n = 1. (AB2)

Observe that (AB2) requires two initial values 3o, y; to begin with. It can be shown that
the global error of (AB2) is O(h?), assuming that y; is chosen appropriately.

3. Suppose g = 2. The interpolating nodes are {x,_», 2z, 1,x,} and we have that

p2($)=|:< (x —zp_1)(x — ) )] (s +[( (x — xp_o)(x — ) }g(l’nﬁ

Tp9— Tp1)(Tp_o — Tp ) Tyl — Tp2)(Tpn_1 — Tp)
(x —xp9)(x — 1)
*L

)
— Tp— 2)(In - xn—l)
2

| ste

- ﬁ[(ﬂv — Tpo1) (@ — ) g(n_2) + 2(x — Tp_2)(x — ) g(xn_1)

+ (@ = ) (@ = am)g(an)

The local truncation error is

(4) Tn+1
ﬂ@):zégﬁf @—xwg@—xwﬁw—dengme@J

Dropping 7,,(h), we obtain the 3-step AB method:

h
Ynt1 = Un + 5 [23%2 — 16y, + 5%_2], n=2. (AB3)

Observe that (AB3) requires three initial values yg, 31, y2 to begin with. It can be shown
that the global error of (AB3) is O(h?), assuming that y;,y» are chosen appropriately.

The (g + 1)-step AB methods are based on interpolation of degree ¢. It can be shown that
the local truncation error satisfies

T, = ChT2Y (g} for some &, € [Zn_q, Tni1),
and y1,y2, ..., y, must be approximated using another method. If these approximations satisfy
Y(zg) —yn(zr) = O(WT), k=1,....q,
then the (q + 1)-step AB method is also of order O(h4*!).

Remark 4.5.1. In the case of (AB2), since we require |Y (x,,) — yn(z,)| = O(h?), this must
be true for n = 1 as well. There are many choices of achieving this:

1. The simplest choice is to use Euler’s method, in which y; is given by

h2 "
y1 = yo + hf(zo,v0) = Yo+ hf(x0,Ys) =— Y1 —uy1 = 7}/ (&),

for some & € [zg, x1]. Globally, Euler’s method is of order O(h), but for a single step, it
is of order O(h?).

2. If we use the RK method of order 2 (RK2), then for a single step, |Y (z1)—yn(z1)| = O(h?),
which is more than required.
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4.5.2 Adams-Moulton (AM) Methods

The idea is similar to Adams-Bashforth methods, except that we consider the set of interpola-
tion nodes {z,,_q41, Tn—g+2; - - -, Tn, Tnt1} instead. From Theorem 2.1.4, it follows that for some

&n € [Tn_g+1, Tnt+1] we have

ole) = pyfo) e T Bl (22 ) s

Y(q+2 a
= py(z) + (q+ 1 (H — Tn—g+( J+1))>

J

(- /

local truncatlon error

assuming Y € CO*[x, .1, 2041].

1. Suppose g = 0. The interpolating node is x,,; and we have that

p()(I) = g(xn+1)~

Computing the integral gives

Tt 1 Tn+1
J g(x)dr ~ f 9(@n41) dz = hg(wni1) = hY, 4,

Tn Tn

with local truncation error

Tn4+1 h2

1um=y%@ﬁ‘ (0 — ) do = =0 Y"(60)

Dropping T,,(h), we obtain the 1-step AM method of order 1 which is just the back-
ward /implicit Euler method:

Ynt1 = Yn + Ayl 1, n=0. (AM1)

As we shall see later, the implicit Euler method is unconditional stable, i.e. the stability
does not depend on the step size h.

2. Suppose q = 1. The interpolating nodes are {x,,, z,1} and we have that

) o, e
pl(x) - (xn _ xn+1>g< n) + (In—l-l _ $n>g( n+1)

= [ = gl + @ gl

T +1 Tn+1 Tn+1
J g(x)dx ~ 9(zn) J (Tpy1 — x)dx + g(x;ZH) J (x — x,) dx

e
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h h

= 59(%1) + §g(xn+l)

h h
= §Yé + §Yn/+17

with the local truncation error

" Tp41 3
1) = [ =) = ) e = ).

Tn

Dropping T,,(h), we obtain the 1-step AM method of order 2 which is the (Simple Trapezoidal)
rule for approximating integral:

h
Yor1 = Yo+ 5 [V + Yo |, m 0. (AM2)

This is often the choice for solving diffusion problem or parabolic PDEs, where one
discretizes in space and solve in time. However, this is not the method of choice for wave
problems since it lacks some notion of stability.

3. Suppose g = 2. The interpolating nodes are {x,_1, Z,, T 12} and we have that

pa() = l( (# = 2n) (& — Tni1) ]g(mn_1)+[ (# = 20 1)(% = Tnp1) ]g(xn)

Tp1— ) (Tn-1 — Tni1) (T — Tpo1)(Tn — Tpgr)

[

Try1 = Tno1)(Tnp1 — Tp)

— 2_22[@ = 20)(T = n+1)9(Tn-1) + 2(2 — Tp1) (T — Tpg1)g(n)

ICEE A CEERPIES]

The local truncation error is

(4) Tnt1 4
T.(h) = YT(&L) J (x —zp1)(x — xp)(x — Tpyr) do = —;L—4Y(4) (&n)-

Tn

Dropping T,,(h), we obtain the 2-step AM method:

h
Yn+l = Yn + E[E)y?'%l + 8y, — y,fl_l], n = 1. (AM3)

If f(x,y) is linear with respect to y, then the Adams-Moulton methods reduce to explicit
numerical methods. However, finding v, .1 requires solving a nonlinear equation in general. In
the case of (AM2), we have

h

h
Yn+1 — Ef(mn-kbyn-i-l) = Un + §f(xm yn)- (451)

One way is to view this as a root-finding problem and solve it using Newton’s method, but
this is practical only for a small system. For large system, we employ a fixed-point iteration
method. Choosing yfﬁil appropriately, we solve the following iteration equation

ygj_ll) =Yn + §[f(xn7 yn) + f(xn-i-hyr(gll)]’ J = 07 ]-7 e (452)
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To determine conditions under which (4.5.2) converges, subtract (4.5.2) from (4.5.1) to obtain

h ,
1
Yn+1 — y,(ffl ) 5 [f($n+17 yn+1) - f($n+1, ?JSL)]

_ ﬁ af(xn-&-l) €n+1)
2 oy

(yn+1 - yfljll)a

for some &,,,1 in between vy, 1 and yfﬁl, where we apply the mean value theorem on the last
(4) h af(wner €n+1)

line. Consequently, we see that vy, — yp41 if ‘2 p <1.
Y

Remark 4.5.2. In practice, the stepsize h and initial guess yﬂl are chosen to ensure that

only one iterate need be computed, and then we can take y,.1 ~ ?/7(11421 The initial guess yffjl
can be computed using (AB1) or (AB2). For instance, using (AB1) gives:

0
v =y + by,

This has a local truncation error of order O(h?) and it matches with the global error for (AM?2) .

q | Global error Adams-Bashforth formula Truncation error
h2
0 O(h) Yn+1 = Yn + hy, ?Y”(fn) 1-step
2 h / / ) 3
1 O(h?) Ynil = Yn + 3 <3yn — yn_1> —h YO (&) 2-step
3 h 3, 4vr(4)
2| O() | s = o+ 73 (20 — 1601 +5uis) | SHY(E) | Sestep

Table 4.1: Adams-Bashforth methods (explicit).

q | Global error Adams-Moulton formula Truncation error
h2
0 O(h) Ynt1 = Yn + by, *EY”(@) 1-step
2 h / / h3
1 O(h?) Yn+1 = Yn + §<yn + ynH) —5Y ®)(&,) | 1-step
3 h / h4 4
2 o(h?) Yn+1 = YUn 12 <5yn+1 + 8y, — yn_1> ——h YW(E,) | 2-step

Table 4.2: Adams-Moulton methods (implicit).

4.6 Consistency and Convergence of Multistep Methods

Definition 4.6.1.
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1. For any differentiable function Y'(z), the local truncation error for integrating Y’ (x)
is given by

T.Y) =Y (xp41) — <Z a;Y (xy—j) + h Z bi f(Tn—i, Yn— ])>, n=p=0. (4.6.1)

j=0 j=—1

2. Define the function 7,,(Y) = T,,(Y')/h. We say that (LMM) is consistent if

7(h) = max |7(Y)— 0 as h—0. (4.6.2)

$p<¢£'n<b

for all Y(x) € C'[zg,b]. Formally, a numerical method is consistent if its discrete oper-
ator converges to the continuous operator of the ODE as h — 0, i.e. the true solution
almost satisfies the discrete equation.

The speed of convergence of the approximate solution {y,} to the exact solution Y (x) is
related to the speed of convergence in (4.6.2). The following theorem provides conditions under
which 7(h) = O(h™) for some m > 1, which does not involve Taylor expansion.

Theorem 4.6.2. Let m > 1 be a given integer. The consistency condition (4.6.2) holds for
any Y (x) € Czq,b] if and only if

Zp: aj=1 and Zja] + 2 b; = 1. (4.6.3)
7=0 j=—1

Moreover, we have that T(h) = O(h™) for any Y (x) € C™+ Y[z, b] if and only if (4.6.3) holds
and

|| Ms

Ya; + k Z )by =1 for any k =2,. (4.6.4)

j=-—1

The largest value ofm > 1 such that (4.6.4) holds is called the order of convergence of
(LMM).

Proof. Assuming Y (x) € C"*[xg,b], expanding Y (z) about the point x,, yields:

2 YR (x, y (m+1)
= Zzl —k('x )(:v — z,)" + e 1(;) ( — 2,)™ ",

-

R

Rm+1 ('I)

for some ¢ € [xg,b]. Using the linearity of the local truncation error 7,, (as a function of Y),

we obtain: "
oY (xn)
T,(v) =Y TTn((x - xn)k) + To(Rons1).

k=0

Tn((:c — a:n)0> =T, (1)=1- i a; = co.

For k =0,
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For k > 1,
p p
Tn<(x - xn)k> = (Tps1 — 2n)" — (Z a;(Tn_j— )" +h 2 bik(zp_; — xn)k1>
Jj=0 j=-1
P p
=Rt~ (Z aj(—jn)k +k ). bjh<—jh>’“‘1>
j=0 j=—1
p P
- <1 — [Z(—j)kaj +k (—j)’f—lbjD ¥
j=0 j=-
= Ckhk.
A similar argument shows that:
Y (m+D(g) mit) Y m1
Tn(Rm-‘rl) = an<($ - fl?n) ) = (m n 1), Cmi1h
It follows that O (a,) 1) g
S Y In k Y mr g m+1
T.(Y) = ’;) o hE 4+ )] Cri1h

For (LMM) to be consistent, we require 7(h) = O(h) and this requires T,,(Y) = O(h?). With
m = 1, we must have ¢y = ¢; = 0 and this gives (4.6.3). To obtain 7(h) = O(h™), we require
T.(Y) = O(h™*1) and this is true if and only if

Cop=¢C =...=¢,=0.

This gives the condition (4.6.4).
|

Formally, a numerical method converges to the true solution if decreasing the step size h
leads to decreased error, in such a way that the error go to zero in the limit as h goes to zero.
The following theorem gives sufficient conditions for (LMM) to be convergent.

Theorem 4.6.3. Consider solving the (IVP) on [x¢,b] using the linear multistep method
(LMM). Assume that

1. the initial error satisfy

n(h) = max |Y(z;) — yp(z;)] — 0 as h— 0.

0<i<p
2. (LMM) is consistent.
3. The coefficients a;,j = 0,1,...,p in (LMM) are all nonnegative.
Then (LMM) is convergent and
max |Y(z,) — yn(xn)| < Cin(h) + Cor(h), (4.6.5)

To<Tn<b

for some constants Cy, Cy independent of h. Moreover, if n(h) = O(h™) and 7(h) = O(h™),

then (LMM) is convergent with order m.
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Remark 4.6.4. The same convergence result can be obtained if we weaken assumption (3) in
the Theorem 4.6.3. Observe that to obtain (LMM) with a rate of convergence of O(h™), it
is necessary that the local truncation error T,,(Y) is of order O(h™™'), but the initial values
Yo, Y1, - - -, Yp need to be computed only with an accuracy of O(h™), since n(h) = O(h™) is
sufficient in the error estimate (4.6.5).

Example 4.6.5. Consider (AB2), the 2-step Adams-Bashforth method of order 2:

h
+ = (3Yn — Yn)-

Yn+1 = Yn 2(

In this case, p =1 and
3 1
a =1, ar =0, by=0, by=35 b=—5.

We verify using Theorem 4.6.2 that (AB2) is consistent and 7(h) = O(h?):
1
Z =ay+a =1
- 3 1
—Zja]-i- dibi=0+ <0+§—§) =1

Jj=-—1

i a]+22 b—0+2(0+0—<—%>):1.

j=0 j=—1

It follows from Theorem 4.6.3 that (AB2) is convergent with order 2, provided n(h) = O(h?).

4.7 Stability of Multistep Methods

Before we define what it means for the linear multistep method (LMM) to be stable, we analyse
one example of (LMM) in which it is an unstable method.

Example 4.7.1. Consider the following 2-step explicit method

h
Yn+1 = Syn - 2yn—1 + §[f<xm yn) - Sf(xn—la yn—1>]7 n =1 (471)

If the true solution Y (z) € C3[xo, b], it can be shown using Taylor expansion that

h 7
Y(zp41) = 3Y (x,) — 2Y (2,-1) + §[Y’(xn) —3Y ()] + Eh?’Y”'({n).
This means that T, = O(h?) and 7(h) = O(h?). Comparing with (LMM), we see that

(1023, CL1:—2, b_1=07 b():—, blz——.
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We first verify that it is a consistent numerical method and 7(h) = O(h?).

|
<
Q
<
+
M@‘
Il
|
=)
|
N7
_|_
/N
e}
+
|
|
DO Qo
N———
Il
—

;(—j)Qaj +2 _21: (=)' = —2 42 (0 10— <_;>) _ 1

Now, consider the following initial value problem

{y’(fff) =0
y(0) =1.

Its unique solution is Y (z) = 1. Applying the 2-step explicit method (4.7.1) to IVP, we have
Yn+1 = 3Yn — 2Yp—1, n =1, yo=1
If we choose y; = 1, then y,, = 1 for all n > 0. Suppose we perturb the initial values to
Yeo =1+¢, y-1 =1+ 2¢,

then
Yer =3(1+26) —2(1+¢) =1+4e =1+ 2%.

We claim that y.,, = 1 + 2" for each n > 0. Using method of strong induction,
Yemil = e — 2Wem—1 = (1 +2%) —2(1 + 2" 1e) = 1 + 2" e

For example, take x, = 1,n = 1/h,x, = nh, the perturbation on the original approximate
solutions satisfies
Yen — Yn = e2" = 521/h —sw as h— O,

i.e. the numerical method is not convergent.

Definition 4.7.2.

1. Let {y,: 0 < n < N(h)} be the solution of (LMM) for some differential equation
/

y' = f(z,y) for all sufficiently small h < hy. For every h < hg, perturb initial val-
ues 4o, - - -, Yp > 20, - -, 2p With

max |y, — z,| <&, 0<h < hy.
os<n<p

The family of solution {y,} is stable if there exists a constant C', independent of h < hg
and valid for all sufficiently small € > 0 such that

max |y, — z,| < Ce, 0 <h < hy.
0<n<N(h)
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2. Consider all the (IVP) with f(z,y) continuous and satisfy the strong Lipschitz condition
(4.2.1). Assume that {y,} produced from (LMM) are all stable. We say that (LMM) is
a stable numerical method (This is a global property of a numerical scheme, true for
any IVPs of admissible class).

3. Consider (IVP) with f(x,y) continuous and satisfy the strong Lipschitz condition (4.2.1).
Assume that all initial values v, ...y, satisfy

n(h) = max |Y(z,) —yn(z,)| — 0 as h— 0.

0<n<p

Then the numerical solution {y,} is said to converge to the true solution Y (z) of (IVP)
if
max |Y(z,) —yn(zn)] — 0 as h— 0.

To<Tn<b

If (LMM) is convergent for all initial value problems, then it is called a convergent
numerical method.

Remark 4.7.3. It can be shown that convergence of (LMM) implies consistency of (LMM).
As an example, consider the following initial value problem:

Since (LMM) is assumed to be convergent, we must have y,.; — Y (2,4+1) = 1. Choosing the

p
initial values yo, ..., ¥y, = 1, it follows that 1 = Z a;.
j=0

It turns out that the convergence and stability of (LMM) are linked to the roots of the
polynomial

p
p(r) = rPtt — Z a;r’. (4.7.2)
=0

This can be obtained by considering (LMM) in the limit as h — 0 and setting y, as rP.
Observe that p(1) = 0 from the consistency condition, so r = 1 is called the principal leading
T00%.

Definition 4.7.4. Let ro, ..., 7, be the roots of (4.7.2), repeated according to their multiplicity
and set 7o = 1. We say that the linear multistep method (LMM) satisfies the root condition
if

1. Each roots lies in the (closed) unit disk in C, i.e. |r;| <1 for every j =0,1,...,p;

2. Roots on the boundary of unit disk are simple, i.e. |r;] =1 = p'(r;) # 0.

Theorem 4.7.5. Assume (LMM) satisfies the consistency condition (4.6.3).

(a) (LMM) is stable if and only if the root condition is satisfied.
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(b) (LMM) is convergent if and only if the root condition is satisfied.

Corollary 4.7.6. Let (LMM) be a consistent linear multistep method. Then it is convergent
if and only if it is stable.

Example 4.7.7. Recall the 2-step explicit method

h
Yni1 = 3Yn — 2Yn—1 + E[f(arm Yn) = 3f(Tn-1,yn1)], n =1
We already shown that this numerical scheme is consistent. With p + 1 = 2, we have
plr) =r*=3r4+2=(r—2)(r —1).

Since one of the roots is » = 2 which lies outside the unit disk, it violates the root condition
and thus it is unstable.

In Theorem 4.7.5, the step size h has to be sufficiently small, but exactly how small should h
be? Clearly, h cannot be extremely small, otherwise (LMM) is impractical for most problems.
We investigate the stability of (LMM) by considering only the following model problem:

{y'@:) = \y(z)
y(0) =1.

An intuitive reason is as follows: Expanding f(z,y) about the point (xg, Yy) yields the approx-
imation:

Y'(z) ~ f(xo,Y0) + fulwo, Yo) (@ — 20) + fy (@0, Yo)(Y — Yp),

which is valid if  ~ zy. Define V(z) = Y (z) — Yy, the approximation above becomes:
Vi(z) ~ AV (z) + g(x),

where A = f, (20, Y0) and g(x) = f(zo, Yo) + fa(xo, Yo)(x — 20). Note that the inhomogeneous
term g(x) will drop out from the error equation because we are concerned with differences of
solutions when investigating numerical stability.

As a motivating example, consider the stability of Euler’s method. Applying it to the model
equation with y(0) = Yy gives:

Yn+1 = Yn + h/\yn, n = 0, Yo = }/0 (473)

Consider the perturbed problem where we only perturb the initial condition. Applying Euler’s
method to the perturbed problem gives:

Znt1 = 2Zn + hAz,, n>=0, zg=Yy+e. (4.7.4)
We are interested in the case where Re(\) < 0, so that for any sufficiently small £ > 0 we have:

Z(x) =Y (x) =™ — 0 as r —> .
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For such A, we want to find values of h such that the numerical solutions of (4.7.3) and (4.7.4)
will retain the behaviour associated with Y (z) and Z(z). Define e, = z, — y,, taking the
difference yields:

eni1 =€+ hre, = (1 4+ hN\)e, = e, = (1 +h\)"ey = (1 +h\)"e, n=0.

Consequently, e,, —> 0 as z,, — o0 if and only if |1 + h)A| < 1, i.e. hA € Bi(—1) < C.

Remark 4.7.8. From the convergence point of view, we can view the original differential
equation as perturbation of the numerical method. In the case of Euler’s method,

Y(2pi1) =Y (x,) + hAY (x,) + gY”(fn),

which is a perturbation of (4.7.3) at every step xg, 1, . ... Nonetheless, the preceeding argument
can be modified to show that the dependence of the error Y (z,,) —y, on the bound |1+ hA| < 1.

Definition 4.7.9. For all A satisfying Re(A) < 0, the set of all complex hA such that the
numerical solution {y,} of (LMM), when applied to the model equation ¢y = Ay, tend to 0

as x, —> o for all choices of initial values {yo,v1,...,¥,}, is called the region of absolute
stability of (LMM).

Applying (LMM) to the model equation, we obtain the following linear (p + 1) order ho-
mogeneous difference equation:

p

p
Yn+1 = Z AjYn—j + hA Z bijZ—j’ n=p=0. (475)

j=0 j=—1

The method for solving (4.7.5) is analogous to that of linear homogeneous ODE, but instead
of exponential solutions we look for polynomial solutions of (4.7.5). Setting y = r* in (4.7.5)
yields:

Dividing by »™~P, we obtain the characteristic polynomial:

p p
0=np(r) = ppHt 2 ajrp_j — hA Z bjrp_j = p(r) — hAa(r),

=0 j=—1
where
p .
o(r) = b_yrPtt 4 Z bjrP™7. (4.7.6)
=0

Denote the roots of p(r) = p(r) — hAa(r) as ro(hX),r1(hA), ..., 7,(hA), counting multiplicity.
Observe that as h — 0, p(r) = 0 reduces to p(r) = 0 and

rj(hA) =r;(0) for j =0,1,...,p.
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Because 7 = 1 is a root of p(r) from the consistency condition (4.6.3), we let ro(h\) to be
the root of p(r) such that r74(0) = 1, and we call this the principal root of the characteristic
equation.

We now construct the general solution to (4.7.5). Suppose the characteristic equation has
distinct roots, then the general solution of (4.7.5) is given by:

p
Yn = 2 /yj[rj(h/\)]nv n =0, (477)
j=0

where «; are constants determined by initial conditions. In the case of repeated roots, say
r;(hA) with multiplicity v > 1, it can be shown that

{31 Ly (BN ()] | (4.7.8)
form a linearly independent set of solutions of (4.7.5). Consequently, a necessary and sufficient
condition for y, — 0 as x,, — oo for all choices of yo, y1,. .., ¥y, is that

|r;(hA)| <1 forall j =0,1,...,p. (4.7.9)

Definition 4.7.10. The set of all complex h\ for Re(A\) < 0 that satisfies condition (4.7.9) is
also called the region of absolute stability. Note that this region is contained in the set defined
in the preceeding definition, and they usually coincide. The second definition is more flexible,
in the sense that the characteristic equation is easier to write down and root-finding algorithm
can be used if necessary to find the characteristic roots. It is difficult in general to express y,
in terms of initial values even for 2-step methods!

Example 4.7.11. Consider the Backward Euler method

Yn+l = Yn + hf(xn+17yn+1)7 n = O,

which is a 1-step implicit method. With ag = 1,b_; = 1,by = 0, the characteristic polynomial
has the form:
p(r) = p(r) — hio(r) =r — 1 — har,

which has a simple root r = assuming 1 —hA\ # 0. The region of absolute stability with

1
1—hA
respect to the second definition is the set of all complex A\ with Re(\) < 0, and we say that
the Backward Euler method is an A-stable method.

On the other hand, applying the Backward Euler method to the model equation and solving
for y,41 yields:

1
n = n+h)\n n =\ 7 1 n
Yn+1 =Y Yn+1 = Yn+1 (1—h)\>y

1 n
== Yp = (m) Yo = [To(h)\)]ny[), n = 0.

We must have |ro(hA)| < 1 in order to have y, — 0 as x,, —> o0 and recover the same region
of absolute stability.
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Relative Stability and Weak Stability

Consider again the model problem:

{y%x) = \y(a),
y(0) =1

Assuming distinct roots of the characteristic equation, the general solution using (LMM) is
given by

p
Yo = 2wl (BN]", 0= 0.
=0
It can be shown that
Yolro(hA)]" — Y (z) = ™ on [0,b] as h — 0.

The remaining terms ~;[r;(hA)]",j = 1,2,...,p are called parasitic solutions and they can
be shown to converge to 0 as h — 0. However, for fixed h with increasing z,,, we would like
to keep the parasitic solutions relatively small compared to the principal part yo[ro(hA)]™.

Definition 4.7.12.

1. We say that (LMM) is relatively stable if
17 (RA)] < ro(RA), j=1,2,...,p,
for all sufficiently small nonzero values of |hA|.

2. (LMM) is said to satisfy the strong root condition if

r(O) <1, j=12,...p

3. If (LMM) is stable but not relatively stable, then it is called weakly stable.

Remark 4.7.13. Using continuity of the characteristic roots r;(hA) with respect to hA, it
can be shown that the strong root condition implies relative stability. The converse does not
necessarily hold, although they are equivalent for most practical methods.

Example 4.7.14. The characteristic polynomial for the Adams-Bashforth and Adams-Moulton
methods in the case h = 0 coincides and has the form

1
— Pl _p

p(r) P,
which has roots 79(0) = 1,7,;(0) = 0,5 = 1,2,..., p. Thus the strong root condition is satisfied

and the Adams methods are relatively stable.
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Example 4.7.15. Integrating Y/ = f(x,Y) over the interval [z,_1,x,.1] yields:

Tn+1
V(own) = V(o) + | Y @)
Tn—1
Applying the (Simple Midpoint) rule onto the integral gives the midpoint method:
Ynt1 = Yn—1 + 2hf(xp,yn), n =1, (Midpoint)
with local truncation error
h3 h?
Tu(Y) = 5 f'(&) = YP(&) for some &, € [wn-1, 0],

It is an explicit 2-step method and the order of convergence is 2. Now, applying to the model
problem, the method reduces to

Yntl = Yn—1 + 2RhAy,, n =1,
and the characteristic polynomial (p = 1) is
p(r) =r* —1—2hAr.
This has roots
_ 2hAE VAN +4 WA+ V1 g B2,

2
We see that ro(h\) = ry,r1(h\) = r_ and they satisfy:

r

ro(hA) = 1+ hXA + O(h?)
ri(hA) = =1+ kXA + O(h?).

Consequently, the midpoint method is weakly stable when A < 0. We justify this in the case
of real A\. When A\ > 0, we have

ro > |r1| >0 for all h >0,

and the principal part yyrj will dominate the parasitic solution ;7. When A < 0, we have
that for all A > 0:
O<ro<1, r<-—1.

This means that the parasitic solution will eventually dominate the principal part as n increases,
for fixed h, no matter how small A is chosen initially. Indeed, yorj — 0 as n — o0 whereas
~v177 oscillates while increases in its magnitude.
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4.8 Problems
1. Derive a Taylor method of order 3 for the following initial value problem
y'(x) = —y(x) + 2sin(z), y(0) = —1. (4.8.1)

What is the truncation error of the method? What is the exact solution for the IVP?

Solution: We first solve the given initial value problem (4.8.1). Solving the homo-
geneous part of (4.8.1) gives the complimentary solution Y.(z) = Ce™". We guess a
particular solution of the form

Y,(x) = Acos(z) + Bsin(z).
Computing its first derivative and substituting into (4.8.1), we obtain
Y, +Y, = —Asin(z) + Bcos(z) + Acos(x) + Bsin(z)
= (B + A)cos(z) + (B — A)sin(z)
= 2sin(x).

This yields two linear equations

B+A =0
B—-A =2,

and solving these yields A = —1,B = 1, i.e. y,(x) = sin(x) — cos(x). Thus, the
general solution of (4.8.1) has the form

Y(z) = Y.(z) + Y,(x) = Ce™ + sin(z) — cos(z)

= sin(x) — cos(x),

where C' = 0 is found using the initial condition y(0) = —1.

Denote Y (z,) = Y,,n = 0. To find the Taylor’s method of order 3 for (4.8.1),
consider the third order Taylor expansion of Y (x,1) around z,:

_ A e N
nH_Kﬁwn+§J;+€n + ﬂY (&) (4.8.2)

local truncation error

for some &, € [y, Tn41]. Next, we compute derivatives of Y (x) using (4.8.1):

Y'(z) = =Y (z) + 2sin(x)
Y'(x) = =Y'(x) + 2 cos(x)
= —[-Y(z) + 2sin(z)] + 2 cos(z)
=Y (x) — 2sin(z) + 2 cos(z)
Y& (z) = Y'(x) — 2cos(z) — 2sin(x)
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= [-Y(z) + 2sin(x)] — 2 cos(x) — 2sin(x)
= —Y(x) — 2cos(x)
YW(z) = —Y'(z) + 2sin(z)
= —[-Y(z) + 2sin(x)] + 2sin(z)
=Y (z).

Substituting these into (4.8.2) and dropping the local truncation error, we obtain the
Taylor’s method of order 3 for (4.8.1):

Ynil = Yn + h[ — Yp + QSiD(ZL'n)] + h;[yn — 2sin(x,) + QCos(xn)]

h3
+ E[ — Yp — 2 COS([En)]
2 3 3
— (1 —h+ % - %) Yn + (2 — B?) sin(z,) + <h2 - %) cos(xy,).

for every n > 0, with yo = —1. Since Y (2) = Y (), the local truncation error for
each step is

Tn(Y> = _Y(fn) for some &, € [xn7$n+1]a n =1

. Construct an example of (using definitions and theory discussed in class, such as root

conditions, consistency condition, etc):

(a) a consistent but not stable linear multistep method;

Solution: Consider the following 2-step explicit linear multistep method:

Ynt1 = 3Yn — 2Yn—1 — hf<xn717 yn,l), n =1

We first show that it is consistent by checking the consistency condition in
Theorem 4.6.2:

1
Z =ag+a; =3-2=1
1

—Z]a]—FZb —a1+b_1+bo+b1=—(—2)—1=1.

To check the root condition, solving p(r) = 0 yields:
pr) =r*=3r4+2=0r—-2)r-1)=0 = r=1 or r=2.

Thus, the root condition is violated and the proposed scheme is not stable. For
this scheme, the numerical solution will grow unboundedly as h — 0,7 —>
with nh = t fixed.

(b) a stable but not consistent linear multistep method.
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Solution: Consider the general form of 1-step explicit linear multistep method:

Yn+1 = ao¥n + hbo f(n; Yn)- (4.8.3)

Clearly, (4.8.3) is stable if and only if |ag| < 1 (from the root condition), and
not consistent if and only if ag # 1. Choosing ag = 1/2 and by = 0 thus yields a
stable but not consistent linear multistep method:

1 1 n+1
Ynt+1 = §y” = (§> Yo, n = 0.

The numerical solution does not blow up, but it does not converge to the true
solution of the initial value problem. Indeed, we see that y, — 0 as n — o0,
independent of the initial value .

3. Find the range of a € R for which the method

Ynio + (@ — Dyps1 — ay, = %[(a + 3) f(tns2, Ynt2) + (3a + 1) f (¢, yn)], (4.8.4)

is consistent and stable.

Solution: First, rearranging (4.8.4) into the general form of linear multistep method:

h
Yn+2 = (1 - a)yn+1 + aYn + Z[(a + B)f(tn+2; yn+2> + (3(1 + 1)f(tm yn)]

Clearly,
3 3 1
CL():(]_—CL), ap = a, b_1:a+ > b0:07 b1: ot . (485)
4 4
In order for (4.8.4) to be consistent, we require that
1
Z a; =ap+a =1 (4.8.6a)
j=0
1 1
— Zjaj + Z bj = —ay + bfl + bo + b1 =1. (486b)
j=0 j=—1

Upon substituting (4.8.5) into (4.8.6), we obtain that the numerical method (4.8.4)
is consistent for any a € R. Indeed,

ap+a;=(l—a)+a=1

a+3 3a+1_—4a+a—|—3+3a+1_1

—a1+b_1+bg+b1=—a+ +0+ 4 4
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To determine the range of a € R for stability, we first write out the polynomial
1
p(r) =rtt — Z ajr'™ =r*— (1 —a)r —a.
7=0

Solving p(r) = 0 using quadratic formula gives:

(I1—a)t+/(1-a)?*+4a (1 —a)Lt4/(a+1)?
2 a 2
(1—a)£(a+1)
5 :

ry =

The roots are

_1—a~|—a+1_

l—a—(a+1)
7‘_,.— 2 -

1, r_
2

= —a.

Now, in order for (4.8.4) to be stable, both r,,r_ must satisfy the root condition.
The first one states that r,, r_ must lie in the closed unit disk, which imposes |a| < 1.
The second one states that roots on the boundary must be simple. For r, we require

pry)=2ry, —(1—a)=a+1#0 < a# —1.

The root r_ lies on the boundary for a = +1, but since we already exclude a = —1,
we simply need to check whether r_ for a =1, i.e. r_ = —1, is simple:

P(-1)=2(-1)— (1—1) = —2 #0.

Thus, the numerical method (4.8.4) is stable for any a € (—1,1]. Consequently, the
numerical method (4.8.4) is consistent and stable if and only if a € (—1, 1].

4. Show that the region of absolute stability for the trapezoidal method is the set of all
complex hA with Re(A) < 0.

Solution: Applying the trapezoidal method to the model equation y’ = Ay yields

h
Ynt+1l = Yn + E[Ayn + /\yn+1]7 n = O’

and rearranging this yields

1—@ = 1—}—@ — = 1+% _ (240
2 Yn+1 = 9 Yn Yn+1 = 1_% Yn = 2 — h\ Yn-

(4.8.7)

Upon iterating the recursive equation (4.8.7), we obtain

{2+ hN\" -
Yn = 2 _ B Yo, n =V,
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2+ hA
2 —hA
stability, we simply expand this inequality:

and y, — 0 as x,, — oo if and only if ‘ < 1. To find the region of absolute

12 4+ hA]2 < |2 — hA]?

[2+ hRe(\)]* + [AIetX)]? < [2 — hRe(N)]* + [=htextX)*
4+4hRe +LRe@(ﬂ7<4—4hReA + [LRetX)T*

8hRe(A) < 0.

Since Re()) is assumed to be negative, we see that this inequality holds for all h > 0.
Hence, the region of absolute stability for the trapezoidal method is the set of all
complex hA with Re(X) < 0.
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Chapter 5
Numerical Methods for PDEs

The main focus of this chapter is finite difference methods for solving partial differential equa-
tions (PDEs) on a bounded domain, coupled with initial and boundary conditions. The basic
idea behind finite difference methods is to seek approximations to solutions of PDEs on a lat-
tice (grid) by replacing derivatives with finite difference approximations, i.e. derivatives are
approximated with suitably weighted differences of lattice values at neighbouring points called
difference formulas, see Section 5.1.1. Different choices of finite difference approximations lead
to numerical schemes with different properties, this is demonstrated using three classical PDEs:

1. Heat equation, which is of parabolic type,
2. Advection equation, which is of hyperbolic type,
3. Poisson equation, which is of elliptic type.

Solutions to a given PDEs often possess certain properties which are intrinsic to the PDEs itself.
As such, these desirable properties should carry over when designing and testing numerical
methods.

Among the important step in setting up finite difference methods is discretising the domain
of interest into a mesh grid, the hope being that the numerical solution converges to the true
solution of the PDE as the mesh spacing, typically Ax and At, both go to zero at arbitrary
independent rates. It turns out that convergence is expected only if Ax and At go to zero at
some specific rate, depending on both the scheme and the PDEs. Similar to numerical method
of ODEs, we will discuss consistency (accuracy) and stability of finite difference methods. This
leads to the fundamental theorem of finite difference methods, which says that under suitable
definition of stability, we may expect that stability is a sufficient condition for convergence of
consistent finite difference methods.

5.1 Background

This section forms the basis for many of the development of finite difference methods later. We
begin by deriving relevant difference formulas that we would use throughout this chapter. For
linear PDESs, applying finite difference method reduces the problem to solving a large but finite
matrix system. For reasons that will become apparent later, we study the spectrum of these
related finite difference matrices. Because we are solving difference equations, these numerical

103
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solutions are functions defined on a discrete set of points; as such, some discrete version of norms
are needed to correctly measure the magnitude of the error and this is done in Subsection 5.1.3.

5.1.1 Difference Formulas

Difference formulas are obtained using Taylor series and higher-order approximations are ob-
tained by retaining higher order terms in the Taylor series. For simplicity, we will work with
functions of one variable, say, u : D — R for some open subset D < R but the same idea
extends to multivariable functions. Define discrete points x; = jh € D,j = 0,1, ... for some
constant A > 0.

1. First-order forward difference: Expanding u(z;41) around the point z; gives:

u(zjpr) = u(z;) + hu'(z;) + h—u"(fj)

2
/ U(Ij+1) - u(a:J) h " . 6+u(xj)
— u'(z;) = ; — U (&) = Y + O(h), (1stFD)

for some &; € [z, x;41].

2. First-order backward difference: Expanding u(z;_1) around the point x; gives:

uw(wj—1) = u(z;) — h'(x;) + %2u"(§j)

— () = u(;) _h“(xj—” . gu"@j) - 5—“155"3') +O(h), (1stBD)

for some &; € [x;_1, z;].

These two approximations give first order accurate approximations to u'(x;), i.e. the size of
the error is O(h) as h — 0. To obtain a second order accurate approximation to u'(z;),
expanding u(x;11) and u(z,;_1) around x; gives:

2 h3

u(wjyr) = ulzy) + hu'(x;) + ?u"(xj) + EU(?)) (z) + O(RY) (5.1.1a)
u(zj_1) = u(x;) — hu'(x;) + h;u”(xj) — %3u(3) (z) + O(RY) (5.1.1b)

Substracting (5.1.1b) from (5.1.1a) and rearranging yields:

' (z;) = (i) 2_}1“(”@'—1) - %u<3>(xj) + O(h?) (1stCD)
50“(%’) 2
- L o(h?),

Now, suppose we expand u(x;11) and u(z;_1) around x; to higher order:

h? h? h*
—u"(x;) + —u®(z;) + —uD(z;) + O(h®) (5.1.2a)

uzjer) = ulzy) + hu'(zg) + 35 5 51



Numerical Methods for PDEs 105

h—Qu”(x-) — h—gu(?’)(m) + h—4u(4) (z;) + O(R®) (5.1.2b)
2 ! 6 24 ! o
Adding (5.1.2a) and (5.1.2b) and rearranging yields the standard second-order central difference

approximation for u”(x;):

u(rj 1) = u(r;) — hu'(z;) +

u//(xj) _ u(xj+1) — 2”}(;;3') + u(a:j*1> . %U(4)($]’) + O(h4) (QDdCD)
._ 53“(1'3') 2
== + O(h?),

Observe that either odd or even order terms will cancel out for symmetric centred approxima-
tions and typically leads to higher order approximations. All the terms with Big-O notations
are the local truncation errors of the corresponding finite difference approximations, which are
caused from truncating the Taylor series.

Remark 5.1.1. If we expect the error to behave like powers of h, then we can plot the error
against h on a log-log scale, since if the error behaves like

Error ~ Ch?,

then
log |Error| ~ log |C| + plog h,

i.e. on a log-log scale the error behaves linearly with slope p, where p is the order of accuracy.

5.1.2 Tridiagonal Matrix

Matrices with constant on diagonals, called Toeplitz matrices, arise frequently not only in
finite difference approximations, but also finite element and spectral approximations of PDEs.
Examples include tridiagonal and circulant matrices. Here, we only state and prove results
about the spectrum of tridiagonal matrix, which can be extremely useful in estimating the
matrix 2-norm under special circumstances.

Theorem 5.1.2. Consider the eigenvalue problem AuP) = )\pu(p), where A € R™"™ is the
tridiagonal matriz

a b
b

b
b «a

with a,b e R. Let h = 1/(n+1). For eachp = 1,2,...,n, the eigenpairs (A, u'?)) are defined
by:

Ay = a + 2bcos(pmh)

u;p) =sin(pmjh), j=1,...,n
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Proof. Examining the eigenvalue equation Au® = /\pu(p) component-wise, we obtain:

with the convention u(()p ) = uﬁlp)rl = 0. We verify directly that the given expression for (A, u®))

are eigenpairs of A. For j =2,... ,n—1,

bu(p)l + au(p) + bU]+1 = bsin(pr(j — 1)h) + asin(prjh) + bsin(pr(j + 1)h)

= bsin(pmjh — pwh) + asin(prjh) + bsin(prjh + prh)

(p
(
= asin(pmjh) + b[SlIl(p?T]h + prh) + sin(prjh — pﬂ'h)]
= asin(prjh) + b[2 sin(pmjh) COS(pﬂ'h)]
= [a + 2bcos(pmh)] sin(pmjh)
= )\pug-p).
For 7 = 1, we apply the double-angle formula:

buo + aul )+ bu2 = aul ) 4+ bu2
asin(prh) + bsin(pn2h)

= asin(prh) + b[2 sin(pmh) COS(p?Th)]

= [a + 2bcos(pmh)] sin(prh)
— )\pugp)
For 7 = n, we apply the difference formula for sine:
bu | + au® + bvuc,(ﬁ1 = bu®| + qu®
= bsin(pr(n — 1)h) + asin(prnh)
= b[ sin(prnh) cos(prh) — cos(pmnh) Sin(pﬂ'h)] + asin(pmnh)
= [a + 2bcos(pmh)] sin(prnh),

where the last equality follows provided we can show that — cos(prnh) sin(pmh) = sin(prnh) cos(prh).
The trick is to rewrite cos(prnh) and sin(pmh) in terms of complex exponential:

1 .
— cos(prnh) sin(prh) = = (e’pmh +e zp”"h)( iprh _ e‘””rh)
1
_ _ 1 (eipﬂ(nJrl)h . eipﬂ'nhefipﬂh + efipﬂnhe'ipﬂ'h o e*ipﬂ'(’flri'l)h)

43

6—1p7r(n+1)h + 6zp7rnh6—zp7rh . e—zpﬂnhezpwh . 61p7r(n+1)h)

ipm(n+1)h + eipwnhefipﬂ'h . efipwnheipwh - e*ipﬂ'(nﬁ'l)h)

—~ —~
g

eipwnh(eipﬂh + 6—ip7rh) o 6—ip7rnh(6ip7rh + e—ipwh)]

|
| —

~—
[
<.
<
N
S
>

o e—ipﬂ'nh)(eipwh + eipwh)
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= sin(pmnh) cos(prh).

The desired result follows since choosing different p € {1,...,n} gives n distinct eigenvalues.
[ |

Very often, tridiagonal matrices arised from finite-difference methods are strictly diagonally
dominant. The next theorem tells us that these tridiagonal matrices are in fact non-singular,
i.e. they are invertible.

Theorem 5.1.3. Strictly diagonally dominant matrices are invertible.

Proof. Suppose by contradiction that A € R™™" is a strictly diagonally dominant matrix that
is singular. There exists an x € R", x # 0 such that Az = 0. Let J € {1,...,n} be such that

|z;| = max |z;l.
7j=1,...n

geeey

Expanding the Jth component of Ax yields:

n n

x.
OI(AI)JIZCLJ]'ZL’]- — aJJ:_Ean_]
j=1 =y
lays| < Z |a;] x_] < Z |a;l-
A =Y,

This contradicts the assumption that A is strictly diagonally dominant and the statement

follows.
[ |

5.1.3 Discrete Norms

The following discussion is based from [LeV07, pp. 251] and is in the one-dimensional setting
but it can be generalised to higher dimension d > 1. Choose 2 = (0,1) < R and subdivide the
interval [0, 1] uniformly into N + 1 subintervals. This gives N + 2 grid points xg, 1, ..., Zn11,
with N interior grid points and 2 boundary grid points. Finite difference methods produce a
set of discrete values (u;);cp, where A is the index set depending on how we incorporate the
boundary data into the finite difference methods; typically A = 1,..., N. Most of the time,
(u;) approximates the true value of the solution u at the point (x;), i.e. u; ~ u(x;) for all i € A.

In discussing the convergence of numerical methods for ODEs, we measure the magnitude of
the error function using certain norms. Because we have a discrete set of approximate solutions
here, let us define the error vector E = U — Ugyact, Where

U= (uh cee ;UN> and Uexact = (U(l’l), s ,U(‘TN)).

Choosing the standard 1-norm:

N
[l =) lesl,
j=1
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turns out to provide a wrong interpretation of the magnitude of the error. Indeed, |E|; can
be expected to be roughly N times as large as the error at any single grid point and as N
increases, |FE|[; might diverge even if the error at each grid point decreases, which is clearly
not the correct behaviour. Since we started by discretising the domain, we should discretise
the L'-norm instead: .
1 = | O da,

0

which suggests the following function:

N
[El = h )] lejl.
j=1

Since h = , this discrete-grid-definition of | - |; is just the average value of the error

1
N+1
vector E over the interval [0,1]. One can show that this function defines a norm. Moreover,
|E|; corresponds exactly to a Riemann sum and we recover the standard L'-norm as h — 0.

A similar argument shows that the discrete-grid-definition of | - |, for p € [1, 00) should be:

N 1/p
lellp = (hz |€j|p> :
j=1

For the case p = o0, the co-norm does not need to be scaled since h'/? — 1 as p — oo0. Unless
stated otherwise, we assume that | - |, takes the discrete-grid-definition when we analyse finite
difference methods.

5.1.4 Von Neumann Stability Analysis

The von Neumannn stability analysis (also known as Fourier stability analysis) provides nec-
essary condition for the stability of finite difference schemes as applied to constant coefficient
linear PDEs. Due to its simplicity, it is often used in practice to provide a good guess for
the time step restriction (if any) used in the scheme. Motivated by the fact that the general
solution to linear homogeneous PDEs is a Fourier series, the main idea of the von Neumann
stability analysis is to study the effects of finite difference schemes on each of these Fourier
modes.

Let u(x,t) be the true solution of some given homogeneous PDEs. Assume an ansatz of
the form

u(z,t) = w(t)e™, where I? = —1 and r= Fourier frequencies.

Evaluating u(z,t) at a discrete grid point (x;,¢;) yields
u(zi, t;) = ul = w;e™. (5.1.3)
Substituting (5.1.3) into the given finite difference method yields
w1 = Kw; = Ky, j=0,1,..., (5.1.4)

where K is called the amplification factor for the method. One might wonder why the same
Fourier-type approach works for finite difference operator, the reasons is that the function
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el is an eigenfunction for any translation-invariant finite difference operator. We see that to
obtain a stable method, w; must remain bounded as j — oo for any Fourier frequencies r.
This means that a necessary condition for the stability of the finite difference scheme is | K| < 1.

Remark 5.1.4. It is important to keep in mind that the von Neumann stability analysis is usu-
ally applied to infinite domain or bounded domain with periodic boundary conditions (which
is equivalent to a Cauchy problem with periodic initial data). Moreover, it only addresses the
issue of stability of the PDE discretisation but does not take into account the discretisation of
the boundary conditions (if any), such as Neumann and Robin boundary conditions.

5.1.5 Local Truncation Error and Finite Precision Arithmetic Error

The local truncation error (LTE) is the error caused from discretising the differential operator
L of a given PDE, i.e. it is the error coming from dropping the higher order terms in the finite
difference approximations. It can also be obtained as follows: Suppose Lu = 0, then the local
truncation error is obtained as 7;; = Laigu, where Laig is the finite difference operator (discrete
differential operator). In other words, it is obtained by replacing the numerical solution with
the true solution in the finite difference scheme.

Definition 5.1.5. A finite difference method is said to be consistent if the discrete problem
approximates the continuous problem, i.e. the local truncation error 7;; converges to 0 as the
mesh spacing converges to 0.

Convergence is related to the magnitude of the difference between the true solution and the
numerical solution from the finite difference scheme. Denote the following quantity:

= exact solution of finite difference scheme at (z;,t;)

| S

u(x;, t;) = exact solution of PDE at (z;,t;)
J
i

oL

= solution of difference equation from finite difference scheme at (z;,t;)

£

Calculating the error by component, we obtain:

Ly = lu(zity) — wl| < Ju(@,ty) —ul] + Jul —ull,
~10-16

where the second difference accounts for finite precision arithmetic error.

5.2 Heat Equations and Parabolic Problems
A simple example of a parabolic PDE is the one-dimensional heat equation:

U — DUz, =0 in O<zxz<L,t>0,
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which models the heat conduction in a rod, with D the thermal diffusivity of the rod. In
practice, the solution is obtained only for a finite time 7" > 0. To solve the heat equation, we
need to specify initial condition at ¢ = 0 and boundary conditions at x = 0 and x = L:

u(z,0) =g(z), 0<z<L

u(0,t) = w(t), t>0

u(L,t) = u.(t), t >0,

For the remaining section, we only deal with Dirichlet boundary conditions, but there are other
boundary conditions such as Neumann boundary condition which specify the heat flux across

the boundary and Robin boundary condition which are combinations of both Dirichlet and
Neumann.

Example 5.2.1. Take D = 1, L = 1 and w;(t) = u,(tf) = 0. One can obtain an explicit solution
to the heat equation using the separation of variables method:

0 1
u(z,t) = Z Ane ™t sin(nrxz), where A, = QJO g(x)sin(nmzx) dzx.
n=1

We list three essential features of solutions to the heat equation:

1. Smoothing property, which says that the solution to the heat equation is smooth on
the interior even if the initial data are discontinuous.

2. Maximum principles, which states that the extremum of the solution occurs on the
boundary of the space-time cylinder. An important consequence is that the solution of
the heat equation is stable with respect to small perturbation in the initial data.

3. Instant messaging, which means that the heat equation transmits information in-
stantly.

Consider the initial-boundary value problem for the inhomogeneous heat equation:
Up — Ugy = fx,t), O<x <L, t>0

u(z,0) =g(z), O0<z<L

w(0,t) = hy(t), t>0

u(L,t) = h.(t), t>0.

We discretise both the spatial and time domain as follows, which gives a set of discrete grid
points (x;,t;):

(Heat)

z;=ih, i=0,1,....,N+1
t; = jAt, j=0,1,..., M.

with h > 0 the spatial mesh spacing with (N + 1) spatial subintervals and At the time step
with M time subintervals. For a uniform grid, we have
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t
(0,t4) (T4,t4)

(To,ty)0——o—o—o—o(xy,ts)

T

(zo,to) (2,t0) (z4,t0)

Figure 5.1: An example of a mesh grid with L =T =4 and N = 3, M = 4. The black and
blue dots represent the initial and boundary data respectively. The red dots are the interior
nodes where the approximation solution is computed.

5.2.1 Forward-Time Central-Space (FTCS) Scheme

Let uf ~ u(x;,t;) represent the numerical approximation at a grid point (z;,t;). At each
discrete point (z;,t;), we have from (Heat)

uxx(wiytj) = U,t(iﬁi, t]) — f(ﬂfz,t]) (521)

The Forward-Time Central-Space (FTCS) scheme is obtained by replacing the time
derivative u; by the first-order forward difference approximation (1stFD) and the spatial deriva-
tive ug, by the second-order central difference approximation (2ndCD). This gives:

W(wig1,t;) — 2u(w;, t;) + w(xio1,t;) w(i, tiv) — u(zg, t))
— oy Dogogy = N 2 faty), (5.2.2)
where the local truncation error 7;; has the form
At h?
Tij = 7Utt(mi7 77]) - Eumzx:r<mzatj) + O(h4> = O(At) + O(h2)

At
Denote A = =L multiplying each side of (5.2.2) by At and rearranging gives:
u(:z:i, tj+1) = U(Q?i, t]) + )\I:U(LUZ'+1, tj) — QU(.T“ tj) + U(ZEi,l, tj>:| + Atf(lﬂl, tj) + AtTij. (523)

Dropping the local truncation error 7;; and setting u(z;,t;) ~ !, f(xs,t;) ~ f/ in (5.2.3), we
obtain:

wl™ = Ml + (1= 20)u] + Ml + Atf (FTCS)
fori=1,2,...,Nand j =0,1,..., M — 1, together with initial and boundary conditions:
uw = g(z;) = gs, i=0,1,...,N+1
wy=ht;))=h), j=1,...,M
Uy = he(t) = by, 5=1,...,.M
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j+1
u;
J J J
u;_4q u; Wit

Figure 5.2: Four-point stencil for the FTCS scheme.

The (FTCS) scheme is said to be first order accurate in time and second order accurate
in space since the truncation error is O(At) + O(h?).

Stencil and Matrix Formulation

Note that the (FTCS) scheme is an explicit numerical method, since ui 1 is uniquely determined
from three values w]_;,u/,u],,. This yields the four-point stencil for the (FTCS) scheme, as

shown in Figure (5.4). Now, define:

u] [ A rud/n? ] 9
ol j

UJ = . ) F} = jj2 ’ G = g,2 )
|y | fh + ud /R g |

where we choose to incorporate the boundary conditions into the vector F;. We can then
rewrite the (FTCS) scheme as a matrix system:

Uj+1:AUj—|—AtF}, j=0,1,...,M—1, UQZG,

where A € RV*¥ is the symmetric tridiagonal matrix:

12\ A
A
A=
A

i A 1—2)]
Von Neumann Stability Analysis
Assume an ansatz of the form .

ul = w;e™ . (5.2.4)

Substituting (5.2.4) into the (FTCS) scheme (assuming f = 0), we obtain

ra;l rxipr1d ra;l ra;_11
wip1e™ = Aw;e " 4+ (1 — 2 )w;e™ + dw;e’ i
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= w;e™! <)\erhl + (1 —=2X) + )\e”’h1>

r

ol <2>\ cos(rh) + (1 — 2)\)>
— w, el <2/\ [1—2sin?(rh/2)] + (1 — 2)\))
= wjemd <1 4\ sin?( rh/2)>

where we use the following formula:

16

2cosf =el’ + e and cos(20) = 1 — 2sin? 6.

Cancelling the exponential term, we obtain
wi1 = (1 —4Asin®(rh/2))w; = Kw; = K7 g, j=0,1,.... (5.2.5)
A necessary condition for the stability of the (FTCS) scheme is:
|K| = |1 —4Asin*(rh/2)] < 1
The upper inequality is trivially satisfied since A > 0. For the lower inequality,
1 —4\sin®(rh/2) = —1 = 2\sin*(rh/2) < 1

and this holds for any r provided A < 1/2. Hence, the (FTCS) scheme is conditionally stable

only if:
At 1
= <=
h? 2
For diffusion coefficient D # 1, a similar analysis shows that the (F'TCS) scheme is conditionally
stable only if:
1
A< —.
2D
This is expected due to the instant messaging property of the solution to the heat equation.

Remark 5.2.2. This stability condition says that the time step must be much smaller than
the mesh size to control the growth of the approximate solution. Moreover, it agrees with the
intuition that one requires the finite-difference approximation to have similar orders of accu-
racy, i.e. At ~ h?

Global Error

Define the error value E! = u(xy,t;) — ul. Subtracting the (FTCS) scheme from (5.2.3) yields
the error equation:
EI*t = \F!

i+1

+(1=2\)E! + \E! | + AtT;;, (5.2.6)
fori=1,2,...,Nand j =0,1,..., M — 1, with initial and boundary conditions:

E?=0,i=0,1,...,N+1
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E}=0, j=1,....M
By, =0, j=1,...,M.
Assuming 1 — 2\ > 0, applying triangle inequality gives:
B < MELL |+ (1= 20)[E]| + A EL,| + At|r].
Next, taking the supremum over all 2 = 0,1,..., N + 1 yields:
max B <A+ 1—2)+ ) mlax\Eﬂ + Atm?x |75
= max |EJ| + At max |71

J
< max |EY| + At <Z max ]Tm|)

k=0

J
= At <Z max ’le’>

k=0

Finally, taking the supremum over all j = 0,1,..., M yields:

M
max | E/| < At <Z max Iml> < MAtmax|r;| = Tmax |7 = O(At) + O(h?).
(2%} k:() 3 1,7 1,7

5.2.2 Backward-Time Central-Space (BTCS) Scheme

Compared to the (FTCS) scheme, the Backward-Time Central-Space (BTCS) scheme is ob-
tained by replacing the time derivative u; with the first-order backward difference approxima-
tion (1stBD). We obtain:

U,(l’i_;,_l, t]) — QU(ZEZ, tj) + u(xi_l, t])
h2

u(w;, t5) — ulx;, t;_
+Tl'j = ( ]) At( J 1) —f(.%i,tj), (527)

where the local truncation error 7;; has the form

At h? 1 )
Tij = 711;,5,5(271',77]') — Eumm(a:“tj) + O(h ) = O(At) + O(h ),

At
for some 7, € [tj_1,t;]. Denote A = =k multiplying each side of (5.2.7) by At and rearranging

gives:
)\u(xiﬂ, t]) — 2)\’&(17“ t]) + )\U(.Z'i_l, t]) = U(il?i, tj) — U(.T,'i, tj—l) — Atf(il?“ t]) — AtTZ’j. (528)

Dropping the local truncation error 7;; and setting u(z;, t;) ~ ul, f(xs,t;) ~ f/ in (5.2.8), we
obtain:

M — (1420w + Ml = —ul ™ — Atf, (BTCS)

(2
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fore=1,2,...,N and j = 1,2,..., M, with initial and boundary conditions:

?:g(xi):gi> 1=0,1,...,N+1
w=mt;)=h, =01, M
ug\/ﬂ = h(t;) :hgvﬂ, J=0,1,....M

The (BTCS) scheme is first order accurate in time and second order accurate in space
since the truncation error is O(At) + O(h?).

Stencil and Matrix Formulation

Note that the (BTCS) scheme is an implicit numerical method, since one needs to solve a
tridiagonal system of equations for all values {u] }jV: , for a particular time step j. The stencil
for the (BTCS) scheme is a four-point stencil, as shown in Figure (5.3). Now, define:

uy f+ (uh/n?) 9
uj J
U; = '2 , Fj= 12 , G = 9‘2 ,
|y | |+ (ulyy /2 | g |

where we again incorporate the boundary conditions into the vector F;. We can then rewrite
the (BTCS) scheme as a matrix system:

BU; =U;1 + AtF;, j=1,2,....M, Uy=G,
where B is the symmetric tridiagonal matrix:
(1420 —A

—-A
B— e RV*N
—A
A 1+2)\]

Note that the matrix B is invertible since B is strictly diagonally dominant. One can show
that U; depends on every component of U;_, this phenomena is called instant messaging.

Von Neumann Stability Analysis

Assume an ansatz of the form '
u) = w;ei (5.2.9)

Assuming f = 0, substituting (5.2.9) into the (BTCS) scheme yields:

Aw;e" @R (1 4 20 w;er ™! 4+ Aw;en @ = g ermid
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J J J
Wi _q u; Wi q
i—1
u

Figure 5.3: Four-point stencil for the BTCS scheme.

WW()\@TM —(1+2X) + )\e”’h1> = —w, T
w, <2)\cos(rh) 1+ 2)\)) — —w,
w, (2/\[1 —2sin?(rh/2)] — 1 — 2)\) — w,

w; <4>\ sin?(rh/2) + 1> = wj_

1
L= = Kw;_ 5.2.10
— Y <1+4)\sin2(rh/2))wj ! Wi, )

and iterating (5.2.10) gives w; = K/wp,j = 0,1,.... Since |K| < 1 for any At > 0, the (BTCS)
scheme is unconditionally stable and so it has better stability property compare to the (FTCS)
scheme. However, it is still advantageous to choose At = O(h?), since we lose the spatial
accuracy if the time step is chosen to be At = O(h) instead.

5.2.3 Theta Method

The theta method could be viewed as an elegant solution to the following problem: can we
combine both the (FTCS) and (BTCS) schemes in such a way that it generates a more accurate
method with improved stability property? First, in a more convenient notation we have:

(FTCS): wl™ —u
(BTCS): w/*' —u

7= HI
j" _ H-j+1,
where ' ' ‘ ‘ .
H = Muy — 20+ ) + At
The idea is to take convex combination of the (FTCS) scheme at time step j and the (BTCS)
scheme at time step j + 1, i.e. for any 6 € [0, 1],

u{“ — uz = Q(ugJrl — uf) +(1-— 9)(uz+1 — uf)

= 0H) + (1 —0)H/M. (Theta)

Observe that

for 6 = 0: recover the (BTCS) scheme.
for 6 = 1: recover the (F'TCS) scheme.
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Von Neumann Stability Analysis
We assume an ansatz of the form

ul = w;e™ ! where I* = —1 and r=Fourier frequencies.

Assume f = 0, since we expect (Theta) to have the form w;;; = Kw, for some K depending
on At,h,0,r, we rearrange it in such a way that the LHS and RHS have terms at time step
J + 1 and j respectively:

W= N1 - 6) [ufj:ll 2ult + ufﬂl] = ul + )\0[ ul,, — 2ul + uf_l]. (5.2.11)
We now substitute the ansatz into (5.2.11) and simplify terms using these two trigonometric
identity:

2cos g = e + e and  cos(2¢) = 1 — 2sin?(¢).

For the LHS expression,

ungl o )\(1 o 9) I:uzill 2u ]+1 + ungll] _ wj+1 [erxil o )\(1 o 0) (erxileThI o 2ermi + emﬁile*rhl>:|

= wjyq e 1 A1 —0) (erh[ -2+ e*"hlﬂ

= w; e :1 —A1-10) (2 cos(rh) — 2)}

= w; e :1 —2X\(1 — 9)<cos(7“h) — 1)]

e [1 —2X(1—0) (—2 sin” (%))]

h
= wjpre! [1 + 4\ (1 — 6) sin? (%)] ,

and for the RHS expression,
ul + A@[ Ui, — 2u) + ul 1] = w][ rail )\t9< railgrhl _ gerei 4 emile*mI)]
= wjemil 1+ X0 (erhl -2+ e_rhl>]

= w;e"! :1 + A0 (2 cos(rh) — 2)]

= wje""i! :1 + 2)\9<Cos(7"h) — 1)]

h
— wye {1 + 270 <—2 sin? (%))]
h
= wjem”l {1 — 4)\0 sin? <%>]

Equating these two simplified expressions and cancelling the exponential term yields:

1 — 4\0 sin?
Wjy1 = < (22) )wj:ij.

1+ 4X(1 — ) sin® (2)
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To conclude the stability analysis, we need to determine if there are restrictions on A such that
|K| < 1, keeping in mind that such condition necessarily depends on the value of 6. Since

h
A>0,1—0=>=0 for any 6 € [0,1] andsin2<%> > 0, we see that K < 1 for any A > 0,

h
regardless of the choice of § € [0,1]. For notational convenience, denote A = sin? (%)

Expanding the inequality K > —1 yields:
1—4XN0A

> -1
1+4XM1—0)A

1—4MA > —1—4XN1—0)A
1—4MA > —1 — 4XA + 4M0A
2 — 8MIA > —4\A
1 —4X\0A > —2)\A

1> 4X0A — 2)\A

1> 2)A(20 — 1). (5.2.12)

1
If20—-1<0,ie 0<60< 3 then (5.2.12) is satisfied for any A > 0 since both A and A are

1
nonnegative. On the other hand, if 20 — 1 > 0, i.e. 5 <60 <1,

MA 1) <1 — A< (5.2.13)

A20 — 1)

h
Since A = sin® <%) < 1 for any 7, h, we see that (5.2.13) is satisfied for any choice of r if
1 1
——>1, je A< ——.
oA(20 — 1) "S5m0 )

Hence, we obtain the following stability condition for the (Theta) method:

1. If 8 € [0,1/2], then it is unconditionally stable, i.e. the scheme is stable for any choice of
time step.

1

2. If 6 € [1/2,1], then it is stable if X satisfies 0 < A\ < 3001

5.2.4 Crank-Nicolson Method

1
For the special case § = 5 of the (Theta) method, we obtain the Crank-Nicolson method:

wf™ —ud = A+ Y+ 2 - 26+ od ) + (] — 2 -l

7

(Crank-Nicolson)

which coincides with applying trapezoidal rule on H f . The (Crank-Nicolson) method is second
order accurate in time and second order accurate in space since the local truncation
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Figure 5.4: Six-point stencil for the Crank-Nicolson method, as well as the Theta method.

error is O(At?)+O(h?), as such we can choose the time step At = O(h) without losing accuracy
in space. Moreover, it is unconditionally stable and is the only second-order theta method in
both space and time. The global error satisfies:

|U(IZ’, t]) — U'ij| = O(AtQ) + O(hg)

Rearranging the (Crank-Nicolson) method as follows:
4 AT . 4 . T L . . . .
ul ™ = D[l = 2l | =l Sl = 2ud |+ A
2ul T — )\[ufill —2ultt Uz—1] 2ul + /\[uirl —2ul + u{_l] F 20U+ 7

T 24 20wl = T = Ml (2 20+ el 20+ .

)

Define the following vectors:

u] A+ (uy/h?) 91
uj J
Uj = '2 , Fj = f2 , G = g‘z ,
_ufv_ _fzj\/ + (ug\ul/hz)_ | IN |

We can then rewrite the (Crank-Nicolson) scheme as the matrix system:
(B4+1)Ujp1 = (A+DU; +2A8(Fj + F;), j=0,1,...,.M -1, Uy =G,

where B € RV*Y is the symmetric tridiagonal matrix arises in the (BTCS) scheme and
A e RV*N is the symmetric tridiagonal matrix arises in the (FTCS) scheme.

5.3 Advection Equations and Hyperbolic Systems

Acoustic waves, electromagnetic waves, shock waves and many other types of waves can be

modelled by hyperbolic PDEs. The prototype for all hyperbolic PDEs is the advection equa-

tion which arises when a substance is carried along with a flow; it is the simplest mathematical

equation that produces travelling waves. For the Cauchy problem, we need the initial data at
time ¢ = 0.

{ut+aux:0, —w<zxr<ow,t>0

(5.3.1)

u(z,0) =g(z), —w<z<®
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where a is a constant. Application of advection equation includes gas dynamics and traffic
flows, where u is the density of cars and a is the speed of cars.
We claim that the exact solution is of the form
u(z,t) = g(x — at). (5.3.2)

Indeed,
ug + au, = —ag'(x — at) + ag'(z — at) = 0.

Example 5.3.1. Consider the advection equation with a > 0 and with initial condition

() 1 if 0 <z <1,
x frd
g 0 otherwise.

The solution is given by

1 if0<z—at<1,

0 otherwise.

u(z,t) = g(x — at) = {

or

(5.1) 1 if at <x <1+ at,
u x? = .
0 otherwise.

u(z,t)

E=0 >0

1 at at + 1

Figure 5.5: The solution travels to the right with speed a > 0 without change of shape.

We summarise some of the key observations about the solution (5.3.2):

1. The solution is constant along the lines of the form z — at = constant. These lines are
called characteristics and information propogates along the characteristics at speed
a > 0.

2. The solution at a given position (Z,t) is determined entirely by the value xy = T — at.

3. The initial shape is preserved. Moreover, the solution formula (5.3.2) requires no differ-
entiability of ¢g. In general, we allow for discontinuous solutions for hyperbolic problems
such as shock waves.
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t t

/NN

(a) a>0 (b) a<0

Figure 5.6: Characteristics of the advection equation for positive and negative a. Observe that
the solution at (Z, ) will not feel it if we introduce a perturbation around zg = = — at.

5.3.1 Boundary Conditions: Inflow and Outflow Characteristics

On the real line, the initial condition u(z,0) = g(z) itself uniquely determines the solution so
the Cauchy problem (5.3.1) is well-posed. On a finite interval, boundary data are needed and
these must be imposed at the correct boundary part, otherwise the problem is overdetermined.

For simplicity, consider the advection equation with a > 0 on the domain 2 = [0, 1] x [0, o).
Referring to Figure 5.6, the characteristics propagate from left to right. In particular,

1. The characteristics leaving the left boundary = = 0 are travelling towards €2, i.e. these
are inflow characteristics.

2. The characteristics leaving the right boundary x = 1 are travelling away from (2, i.e.
these are outflow characteristics.

Thus, the problem is well-posed if we impose boundary data u(0,t) = ug(t) on the left boundary
x = 0, in addition to the initial condition u(z,0) = g(z). The resulting solution has the form:

g(x — at) if ©—at >0,
1) =
u(z, 1) u(](t—f) if x—at<0.
a

Note that u will have a jump discontinuity along the characteristic x — at = 0 if u(0) # g(0).

Remark 5.3.2. If a < 0, then we have outflow characteristics from the left boundary x = 0
and inflow characteristics from the right boundary x = 1. Consequently, we must only impose
boundary data u(1,t) = u;(t) on the right boundary z = 1. The resulting solution has the

form:
g(x — at) if v —at <1,

u(x,t) = —1
(z,%) ul(t—x ) if x—at>1.

a
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As before, u will have a jump discontinuity along the characteristics z — at = 1 if uy (1) # g(1).

T

Figure 5.7: With a > 0, the purple characteristics carry information from g(z¢) = g(x — at),

x
while the blue characteristics carry information from ug (t — —>.
a

5.3.2 First-Order Methods

Consider the advection equation on a bounded domain:
ug + auy, =0 in (xp,zgr) x (0,7
u(z,0) = g(z) on [rr,zr],
where the boundary condition for ¢ > 0 is
u(zp,t) =ug(t) ifa>0,
u(zg,t) =ug(t) ifa<0.

TR — L

We discretise this on a uniform grid with spatial mesh spacing h = and time step

T
At = U This produces a set of discrete grid points (z;,t;) defined by:

ri=xp+th, i=0,1,...,N
t; = jAL, jg=0,1,...., M.

Upwind and Downwind Scheme

We now derive the upwind scheme for a > 0 and a < 0. We approximate the time derivative
u; with the first-order forward difference (1stFD) which yields explicit method. For the spatial
derivative u,, we could either approximate it by forward or backward differencing in space:

1. For a > 0, the upwind scheme is obtained by approximating u, with the first-order
backward difference (1stBD) yields:

e T e e B (£8)
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where the local truncation error 7;; takes the form

At h
my = Sun(wim) + %um(&,tj) — O(At) + O(h). (5.3.4)

At
Denote the dimensionless quantity A = a=t which is known as the Courant number,

multiplying each side of (5.3.3) by At and rearranging gives:
U(%i, t]’+1) = U(fﬂi, tj) — )\[U(i[)z, t]> — U(.Ti,l, tj)] — Atﬂ‘j. (535)

Dropping 7;; and replacing uf ~ u(x;, t;) in (5.3.5), we obtain:

wltl = (1= A)Uf n /\uZ_l, (Upwind: a > 0)

7

fort =1,2,...,Nand j =0,1,..., M —1, together with initial and boundary conditions:

2. For a < 0, the upwind scheme is obtained by approximating u, with the first-order
forward difference (1stFD) yields:

u(xi,th)A; u(x;, t)) ta (U(xiﬂﬁtj)h_ u(xi’tj)) + 7 =0, (5.3.6)

where the local truncation error 7;; is the same as (5.3.4). Multiplying each side of (5.3.6)
by At and rearranging gives:

w(z, tipr) = u(w, t;) — Mu(zigr, t;) — u(wg, t;)] — At (5.3.7)

Dropping 7;; and replacing uf ~ u(x;, t;) in (5.3.7), we obtain:

uf“ =1+ )\)uz — )\ugﬂ, (Upwind: a < 0)

fori =0,..., N—land j =0,1,..., M —1, together with initial and boundary conditions:

W =g(z;) =g, i=0,1,...,N
ug\f:UR(tj), j=1,..., M.

These two methods are first order accurate in both time and space. Moreover, they
inherent the asymmetry property of the advection equation, i.e. its solution profile translates
across time; this is evident by looking at the stencil of these two methods. The stencil also
tells us that the choice between these two methods should be dictated by the sign of a. These
schemes are called upwind schemes because they retain the important property that the infor-
mation propogates from left to right (right to left) for @ > 0 (a < 0). The downwind scheme,
which is the opposite of upwind scheme, is obtained by forward (backward) differencing for
a>0 (a<D0).
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j+1 j+1
J J J
U;_q u; u; Wit

Figure 5.8: Three-point stencil for the (Upwind: ¢ > 0) and (Upwind: a < 0) scheme.

Stability via von Neumann Method
Substituting the ansatz u] = w;e’®! into (Upwind: a > 0) yields:
ugﬂ =(1- )\)uf + )\ug_l
Wi = (1 — Nwer™T + hwjer@lem™!,
Cancelling out the exponential term, we obtain:
Wjt1 = Wj [1 — A+ )\e*m[] = Kuwyj,
and we require the amplication factor |K| < 1, i.e.
1= X+ Xe™ 2 = [1 - A+ )\cos(?"h)]2 + A sin®(rh)
= (1 =N+ 2X(1 — A) cos(rh) + A2 cos?(rh) + A*sin’(rh)
— 120+ A2+ 2\(1— )\)[1 - 2Sin2(rh/2)] + 2
=1 =2\ +2X2 + 2X(1 — \) — 4X(1 — \)sin*(rh/2)
=1 —4X(1 = N\)sin®*(rh/2) < 1
— 0 <4A(1 — \)sin®(rh/2).
This holds for any r provided A(1 — ) =0, i.e. 0 < A < 1. For (Upwind: a < 0),
wl ™= (1+ Nl — M,
wipre™d = (1 4+ Nw;er™ ! — M@l erh!
Wjp1 = wj[l + A\ — )\erhl] = Kwj.
Expanding |K|? yields:
1T+ X — Ae™? = [1 + A - /\COS(Th)]2 + A sin®(rh)
= (1+ N2 —2X(1 + A) cos(rh) + A\ cos?(rh) + A*sin*(rh)
— 120+ 202 - 2\(1+ )\)[1 - 25in2(rh/2)]
=142\ +2X% = 2\(1 + \) + 4\(1 + ) sin*(rh/2)
= 1+ 4XN1+ A)sin®(rh/2) <1
= 0 < —4A\(1 + \)sin®(rh/2).
This holds for any r provided A(1 + \) <0, i.e. —1 <\ <0.
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5.3.3 The Courant-Friedrichs-Lewy (CFL) Condition

The CFL condition is a necessary condition for convergence of finite difference methods, typ-
ically time-explicit methods for hyperbolic problems. Roughly speaking, it states that a nec-
essary condition for convergence is that the numerical method must be able to access the
information required such as initial data to form the correct solution. Otherwise, we can
change such data and hence change the true solution without having any effect on the nu-
merical solution, so the method cannot be convergent for general initial data. To make this
rigorous, we introduce the concept of domain of dependence which is especially important
in the study of hyperbolic system.

Definition 5.3.3. For wave problems, the continuous domain of dependence for the so-
lution at (Z,t) consists of all the points on the z-axis (t = 0) that contributes to the solution
at (Z,t). For the advection equation, the domain of dependence for (Z,?) is the single point
(z — at,0). Consequently, the solution at (Z,¢) changes if and only if g(Z — at) changes.

Definition 5.3.4. On a particular fixed grid, we define the numerical domain of depen-
dence of a discrete grid point (x;,;) to be the set of grid points at the initial time ¢, such
that their corresponding data contributes to the solution u.

Consider the (Upwind: a > 0) scheme. The value u! depends on u/~| and w~', which in
turn depends on u)_; to u) >. Tracing back to the initial time ¢, = 0, we obtain a right tri-

angular array of grid points and we see that uf depends on the initial data at the grid points
{zi_j,xi_j41,...,2;}. A similar argument shows that the domain of dependence of ] for the

At
(Upwind: a < 0) scheme is the set of grid points {x;, z;41,...,%;1;}. Keeping the ratio -

fixed, as we refine the grid, we see that the value u{ for the (Upwind: a > 0) scheme depends
on more values of the initial data, but these values all lie within the same interval [z;_;, z;].
Moreover, the numerical domain of dependence will fill in the interval [z;_;, z;] in the limit as
the time step At and spatial width h go to zero.

Recall that we want the numerical solution u} converges to the true solution u(x;,t;) as the
mesh width goes to 0. This gives rise to the CFL condition:
A numerical method can be convergent only if its numerical
domain of dependence contains the true domain of dependence
of the PDE, at least in the limit as h and At go to zero.

Remark 5.3.5. We stress again that in general the CFL condition is only a necessary condition
for convergence of finite difference methods for hyperbolic PDEs. In addition to this and
the consistency requirement, a proper stability analysis is required to determine the stability
restriction on At and h.

Referring to Figure 5.9, for the (Upwind: a > 0) scheme the CFL condition requires that
LTi—j < T — at]’, i.€.

x; — jh < x; —ajAt
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Figure 5.9: Numerical domain of dependence of (z;,t4) for the (Upwind: a > 0) and
(Upwind: a < 0) scheme.

Observe that for the (Upwind: a > 0) ((Upwind: a < 0)) scheme, the positive-definiteness
(negative-definiteness) of A comes from the physical intuition that the method should be used
to solve (5.3.1) when a > 0 (a < 0).

5.3.4 Lax-Friedrichs Method

Another time-explicit method can be obtained by approximating the spatial derivative u, with
the first-order centred difference (1stCD). Dropping the local truncation error and replacing
7~ u(z;, ty) yields

u;

. N 4
g+l _ 5 2N d
W ==y (ui—H uz’—l) :

Performing a von Neumann stability analysis shows that this method is not useful. Indeed,
after cancelling the common factor we obtain:

A

Wi = W, (1 - §[erhl - e_rh1]> = w; [1 — I\ sin(rh)],

and the magnitude of the amplication factor satisfies:

|K|? =1+ M\sin®(rh) > 1.
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By replacing uf with the average of its nearest neighbour, we obtain the Lax-Friedrichs
method:

‘ 1 . N\ .
ug+1 = (U§_1 + u§+1) -3 (“g+1 — ug_l) (Lax-Friedrichs)

Let us examine the consistency condition, if any. By replacing uf with the true solution u(z;, t;)
in (Lax-Friedrichs), we obtain

w(wi, tjp) — 3 [u(@io1, ty) + u(@ipr, ;)] ta [U(Ii+17tj) — w(xi_1, tj)]

v - 2h
- u(zi, tj1) — ulxi, b)) ta w(@igr, ty) — w(xioa,t;)
N At ] o7
1
Ftas

It follows from difference formulas (1stF'D) for the first term, (1stCD) for the second term and
(2ndCD) for the third term that:

2

— E[um(@, t;) + (’)(h2)]

T = w (x4, ;) + O(At) + a[um(m‘i, t;) + O(hQ)]
h2

= O(At)+ O(h)+ O (E) .

2
For the scheme to be consistent, we require that N 0 as At,h — 0, which suggest

choosing the time step At = O(h) as At,h — 0. We see that the Lax-Friedrichs method is
first order accurate in both time and space.

Figure 5.10: Three-point stencil for the Lax-Friedrichs method.

We now turn from consistency to stability. From von Neumann stability analysis,

_ w; g _ AW _ g
wj+167‘:v11 _ (erxlle rhl + 67"%[67“/1[) o J (67‘%[67”1[ o BTIJG rhI) )
2
Cancelling out exponential term, we obtain:

% (e—rhl Loerhd )\<€rh1 _ e—rhl))

Wjt+1 =
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= wj [ cos(rh) — I\ sin(rh)] :
Expanding the amplication factor yields:
|K|* = cos®(rh) + A sin*(rh) = 1 + (A\* — 1) sin®*(rh),

and this is bounded by 1 for all r only if A* =1 <0, i.e. |A| <1.

5.3.5 Lax-Wendroff Method

So far all the methods we discussed are first-order. One possible way to achieve second-order
accuracy is to use a second-order finite difference for the time discretisation. For various
reasons, it is much more convenient to use a two-level methods for PDEs whenever possible—
in more than one dimension the need to store several levels of data may be restrictive and
boundary conditions can be harder to impose, to name a few reasons. We guess an ansatz of
the form . . A ‘

= Aul, + Bul + Cul_,. (5.3.8)

u;

The idea is to use Taylor expansions directly on the advection equation u; + au, = 0, replac-
ing the time derivatives arising in the Taylor series expansion with spatial derivatives, using
expressions obtained by differentiating the given PDE.

Expanding u(x;,t;11) around t; gives:

AtQ 3
U(Q?i, tj+1) = U(l’i,t]‘) + Atut(aci, tj) + Tutt(xi, tj) + 7uttt(xi7tj) + O(At4) (539)
Assuming v has sufficient regularity, since u; = —au,, we have that:
Upp = —QUgy = — AUy = —a(—llyy) = iy,
Usty = 0P Ugap = 0P Utng = 07 (—AUags) = —0 Usga,
and substituting this into (5.3.9) yields:
2At2 3At3
U(Jli, tj+1) = U(l’i, tj) — aAtux(xi, t]) + CLTUMC(LUZ, tj) — aTuzm(xz, t]) + O(At4) (5310)
Next, expanding u(x;11,t;) around x; gives:
2 h3
u(:c,;ﬂ,tj) = U(LEl',tj> + hux(a:z,t]) + 5’U/w$(.§€“tj> + Eumx(x,,t]) + O(h4) (5311)

Substituting (5.3.10) and (5.3.11) into (5.3.8) yields:

2At2 3At3
u(x;, tj) — alAtug(z,t;) + aTuxx(ﬂji,tj) - aTuxm($i, t)
h? h3
= A[u(wz,t]) + huz(x,,tj) + Eum(:v,,t]) + Eumx(x“t])]

+ Bu(x, t;) + O(AtY) + (A + C)O(hY)
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2 h3
+ C[U(.ﬂl, t]) — hux(l'“ t]) + ?UII(.CCZ, t]) — Eumx(xl, tj)]

Equating coefficients of u(z;,t;), us(x;, t;) and wg.(z;,t;), we obtain the following system of

linear equations:

A+B+C=1
A-C=-\
A+C =N,
which has solution ) )
A:A;A,C:A;A,le—ﬂ
This yields the Lax-Wendroff method:
ult = 5 uwl, + (1= A)ul + 5 (. (Lax-Wendroff)
N . A2 4 .
=uj — 9 (ufpy —uly) + ) (ulpy —2u] +uj_y)

The local truncation error is

U(Ii, tj+1> — I:AU(.’I?iJrl, tj) + BU(Q?“ tj) + CU(SL’i,h tj>]

E Al
—aB A2 (A—C)h? h
= P P el A .y A3 — (A -
5 Uy (T, T5) 5 Upew (24, t5) + O(AE) — (A + C)O <At)
—a?At? A3
= a6 umx(l‘i, t]’) + @ux:px(lﬁyt]‘) + O(At?’) + O(Ath?)

— O(A#) + O(h?).

Note that division by At is because we want to recover the time derivative u;. The local

truncation error can also be obtained directly. Using uy = auy, and Uy = —a3Uy,,, we have:
w(x;, tiv1) — u(x;, t; A
ry = WOl ZUEL) L 2 i 1) — ulais 1)
)\2

(w(@iv1,7) — 2u(@s, ty) + u(@i-1,t5))

C2At
_ul@a i) —w@nt) | (ul@inty) — ul®ion )
At 2h
@A (u(@iga, ) = 2u(wi, ty) + u(xi, t)
2 h?
At At?
= Ut(Ii,t]‘) + 7utt(xi,tj) + ?uttt('xia t]) + O(At3)
h? 2At
+a (ux(xi;tj) + gux:v:v(xivtj> + O(h3)> - . 92 (ux:r(xi;tj) + O<h2>)
a’At adAt?

- Um:(xiatj)_Turmr(xi7tj)+O(At3)
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B2 f At
+1ﬂmm%m+omﬁ—%r%w%m+0@m%

6
— O(AL) + O(h?).

We now investigate stability of the scheme using the von Neumann stability analysis. The
amplification factor for the (Lax-Wendroff) method is

2 2
K = (A 5 Ae””) +(1—=)%)+ (—)\ ;Ae_rhl>

=1— A+ A cos(rh) — I\sin(rh)
=1+ )\Q[COS(Th) - 1] — I\sin(rh)
=1 —2\?sin®(rh/2) — 21 sin(rh/2) cos(rh/2),

and computing | K |* yields:

2
K|? = [1 Pt sin2(rh/2)] + 4AN2sin2(rh/2) cos?(rh/2)
=1 —4\?sin?(rh/2) + 4\*sin*(rh/2) + 4)\*sin?(rh/2) cos?(rh/2)
=1 —4\?sin®(rh/2)(1 — cos?(rh/2)) + 4\* sin*(rh/2)
=1—4\?sin(rh/2) + 4\*sin*(rh/2)
=1 —4X*(1 — \*) sin*(rh/2).

We see that |K|> <1 for all 7 as long as 1 — A2 > 0, i.e. |\ < 1.

5.4 Elliptic Equation

5.4.1 1D Poisson Equation

Consider the one-dimensional Poisson equation (inhomogeneous Laplace’s equation) with Dirich-
let boundary condition:

(Poisson)

u'(z) = f(z), 0<z<1,
u(0) = o, u(l) = 3.

This problem is called a 2-point boundary value problem (BVP) since boundary condi-

tions are specified at two distinct points. For sufficiently nice f(z), the (Poisson) problem can

be solved explicitly but studying finite-difference methods for this simple problem will reveal

some of the essential features of all such analysis, particularly the relation of the global error

to the local truncation error and the use of stability in making this connection.

Subdividing the interval [0, 1] uniformly into m + 2 subintervals gives the set of discrete

is the mesh size. At each discrete

grid points (xj);.f[)l defined by z; = jh, where h = n
m
point z;, replacing u”(z) with a second-order central difference (20dCD) gives:

u(wjr1) — 2u(x;) +ulwj1)
h2

= F(a) + D (ay) + OB,

>

~
local truncation error
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Dropping 7; and denoting u; ~ u(z;), f; & f(x;) as the numerical approximation at z;, we
obtain the three-point stencil scheme:

Ujt1 — QUj + U

- —f, j=1,...,m, (5.4.1)

with boundary conditions ug = «a, u,,11 = 8. Define the following vectors:

L L _oz—

Uy S 0
S P
0

Ko v 5

where we incorporate the boundary conditions into the vector F. We can then rewrite (5.4.1)
as the matrix system A"U = F, where A" € R™*™ is the symmetric tridiagonal matrix:

2 1
1
Ah = —

5.4.2 Stability, Consistency and Convergence

We already knew that the local truncation error 7; of the scheme (5.4.1) is of O(h?) from the
derivation. In general, if we were given a finite-difference method, the local truncation error is
obtained by replacing u; with the true solution u(z;) in the scheme. As an illustration, from
(5.4.1), using (2ndCD) we obtain:

w(zji) — 2u(z;) +u(r;_q) h?
T = — o — = flzy) =" (x;) + EU(4)(xj) + O(h*) — f(x;)
= O(h?) ash— 0.
If we define 7 = (1;) € R™ and Uexaet € R™ is the vector of true solution at grid points, then

" = A'Ueraet — F = A"Uexaet = 7" + F.

To analyse the global error E" = (E;) = U — Ugxacet € R™, subtracting A"Ueer = F + 7"
from A"U = F gives
AMEM = 1M (5.4.2)
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which corresponds to the system of equations:

Ej+1 - QE] + Ej—l
h2

=-75, J=1,...,m,

with boundary conditions Ey = E,,4+; = 0. From Theorem 5.1.3, the tridiagonal matrix A" is
invertible since it is strictly diagonally dominant. Solving (5.4.2) for E" gives:
Eh _ _(Ah)flTh

?

and taking norms gives:

[EM ] < 1AM I

We see that the global error will have roughly the same magnitude as the local truncation error
if we impose the following condition: there exists a constant C' > 0 independent of h such that:

[(AM)7Y| < € for all h sufficiently small.

This leads to
|E"| < C|r"],

and so |E"| goes to zero at least as fast as |7"|| as h — 0. This motivates the following
definition of stability for linear BVPs:

Definition 5.4.1. Suppose a finite-difference method for a linear BVP gives a sequence of
matrix equations of the form A"U" = F* where h is the mesh width. We say that the method
is stable if:

1. (AM)~! exists for all h sufficiently small, say 0 < h < hq,
2. there exists a constant C' > 0, independent of A, such that

I(AM7Y < € for all h < hy.

Definition 5.4.2. We say that a finite-difference method is consistent with the given BVP
if

7" — 0 as h — 0.

We say that a finite-difference method is convergent if |[E"| — 0 as h — 0.

Theorem 5.4.3. If a finite-difference method is consistent and stable, then it is convergent.

Proof. Using the definition of stability and consistency in order, we obtain:

|E"] < 1A"Hlmall < Clmall — 0 as h— 0.
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The above analysis leads to the following conclusion:
O(h?) local truncation error + stablity —  O(h") global error.

Consistency is usually easy to verify, but the difficulty lies in showing stability since the ma-
trix A" grows in size as the mesh width h — 0. Note that for other classes of problems, it
may not even be clear how to define stability in an appropriate way that allows one to prove
convergence using Theorem 5.4.3. Nonetheless, this forms the basic of proving convergence
of finite-difference methods: first compute the local truncation error of the method and then
use some form of stability to show that the global error can be bounded in terms of the local
truncation error.

5.4.3 Stability in | - |,

For the (Poisson) problem, the main goal now is to obtain a bound for |[(A")~!| that is inde-
pendent of the mesh-width h. Clearly, this depends strongly on the choice of norms, usually
dictated by what order of accuracy we want for the given method.

The fact that the matrix A" is symmetric (and so is (A")~!) suggest the choice of the matrix
2-norm, because then

A M = p((AY) ) = max A" = ( win |Ap|) ,

1<psm 1<p<m
where {\1,..., A\, } are eigenvalues of A", From Theorem 5.1.2 with
2 1
a = _ﬁ’ b = ﬁ’
the eigenvalues of A" are:
2 2 2
Ap = ~73 + ﬁCOS(}??Th) = ﬁ<cos(p7rh) — 1), p=1,...,m,

with its corresponding eigenvectors u?) = (u§p )):

ug.p) = sin(pmjh), j=1,...,m.

The matrix A" is negative definite since all its eigenvalues ), < 0. The smallest eigenvalue of
A" in magnitude is

ST +O(h6)>

= -—1*+O(h*) as h— 0.

A= %(COS(?T]I) - 1)
2 w2h?*  wiht
(-

This shows that |[\;| ~ 72 for sufficiently small A > 0 and it is bounded away from 0 as h — 0,
indicating that the method (5.4.1) is stable in the 2-norm. Moreover, we obtain the global error

bound: 1
|E"2 < I(A") 7 2)l7" ]2 ~ pHT% = O(h?) as h— 0.
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We also have the following approximation for the local truncation error:

h? h?
I ~ 1O = S

where | f”|2 is the discrete-grid-norm of f” evaluated at {x1,..., 2}

Remark 5.4.4. The eigenvalues for one-dimensional Laplacian is p, = —p?m%,p = 1,2,...,
with corresponding eigenvector u” = sin(prz); p is known as the wave number. The eigenvec-
tors of A" are simply the first m eigenvectors of the Laplacian evaluated at the discrete grid
points z; = jh,j =1,...,m. For a fixed p, A\, ~ p, for sufficiently small h > 0, since

Ap = %(Cos(pﬂh) - 1>

2 p2772h2 p47.‘.4h4 6
AN +O(h)>

= —p’r* + O(h?) as h — 0.

In the limit as h — 0, we recover the eigenvalues for the continuous Laplacian operator.

Since all norms are equivalent in finite-dimensional vector space, one might think that we
recover the full error estimate up to a multiplicative constant; this is false because the constant
of equivalence actually depends on the mesh width h. For the co-norm,

BEj| < hIE;P < h ) B = |E"3,
j=1

and taking the supremum over all j = 1,...,m yields:

|E" o0 < lo = O(h*?) as h—0,

1
—_||Eh
Vi
This does not show the second order accuracy that we would like to have. Nonetheless, by

explicitly calculating the inverse of A" and then showing that |/(A")~!],, = O(1) using the idea
of Green’s function, we obtain the same error estimate in the co-norm:

|E]ee < I(A") HaolITlleo = O(R?),

since ||7"[,, = O(h?).

5.4.4 2D Extension of Poisson Equation

Consider the Poisson equation g, + wu,, = f on the unit square D, with Dirichlet boundary
condition u|sp = up. We discretise the square uniformly, with grid nodes (z;,y;) defined by

z; = 1Az, y; = jAy.

Let w; ;, fi; represent the finite-difference approximation of u(x;,y;), f(x,y;) respectively. Us-
ing the second-order central difference (2ndCD) for both w,, and u,, and dropping the local
truncation error gives the following:

Uirlj — 2Wij + Uiv1y | Uig1 — 25 + Ui

(Az)? (Ay)?

= fij-
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Figure 5.11: An example of a square mesh grid with m = 6. The black dots are the boundary
data. The red dots are the five-point stencil for the Laplacian about the point (z4,y4).

Assuming Az = Ay = h = m+r1, we obtain the five-point stencil scheme:

Uir1,j + Uim1,j + U1 + i1 — duy,

h2

= fija ’L,j = 1, = oo g Wil (543)

with boundary conditions:

(3, 0)

Ui m+1 = UD(ZL‘Z', ].), 1= 1, 2, cooy
(0,95)
(1,95)

|
IS
3 3 3 3

=

.
|
—_

no

Observe that the five-point stencil scheme (5.4.3) is a system of m? linear equations with m?
variables, and we can rewrite this as a matrix system A"U = F, where the matrix A" e Rm*xm?
is now very sparse, i.e. most of the elements are 0. There exists different orderings for the
grid points, but all such matrices are equivalent up to permutations. In constrast to the one-
dimensional problem, there exists more choices in terms of ordering the grid points. Although
all such matrices are equivalent up to permutations, a clever choice of ordering will have a
significant impact when it comes to numerically solving the matrix system. Unfortunately, in
two-dimensions the structure of the matrix is not as compact as in one-dimension, in that the
nonzeros cannot be as nicely clustered near the main diagonal.

A natural choice is the rowwise ordering, where we take the unknowns along the bottom
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row, followed by unknowns in the second row, and so on. As such, define the following vectors:

- - [ side® + bottom |
o) f(l) sidet’ + 20 om
side®
e f(2) 1
U = y F - : — p y
' s Ja(m—1)
) fm) side
- - - - side™ + top
where - -
Uy, 5 flj
I Rl DR D IR e
| Umj | | fmj |
and
— —_ _— — uo’]
U1,0 U,m+1
i 0
U U2 m ‘
bottom = ?’0 , top = 2" i , sideV) = : eR™, j=1,2,...,m.
0
_um,O_ _um,m-i-l_
| Um+1,5 |

The corresponding matrix A" € R™ ™ of the scheme (5.4.3) has the form:

T I,
I,
1
h _
A" = = ,
I
where T' e R™*™ is the symmetric tridiagonal matrix:
4 -
1
T =
1

Remark 5.4.5.
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5.4.5 Accuracy and Stability in 2D

The local truncation error 7;; is obtained by replacing u; ; with the true solution u(x;,y;) in
the scheme (5.4.3):

1
T2

Tij (U(l‘zfl, yj) + u<xi+17 yj) + U(Iz, yjfl) + U(xiy yj+1) - 4U(Ii, y])> - f(Iz', ?Jj)
h2
= “m(xz'?yj) + uyy(xi; yj) + _<u$$$$(xi7yj) + uyyyy(xia y])) + O(h4) - f(%,yj)

12
= 0O(h?) ash— 0.

This is just a consequence of the one-dimensional local truncation error on both x and y di-
rection. Define E;; = u;; — u(z;,y;). The error equation is A"E" = —7" and the method will
be globally second order accurate provided it is stable in some chosen norm, i.e. there exists
a constant C' > 0, independent of h as h — 0 such that [[(A")71| < C.

For rowwise ordering, we show that (A")~! is uniformly bounded in the 2-norm as h — 0.
The eigenvalues of A" are:

2

Apg = ﬁ[<cos(p7rh) — 1> + (COS(th) - 1)]’

with corresponding eigenvectors u(®?) = (ul(-f}q» e R™’:

u; = sin(pmih) sin(qmjh), i, =1,2,...,m,
where the parameter p,q = 1,2, ..., m are the wave numbers in the x,y direction respectively.
The matrix A" is again negative definite since all its eigenvalues \,, < 0. The smallest eigenvalue

of A" in magnitude is

A = %(COS(?T]I) — 1)

_ % (_mzfﬂ + ”1?4 + (D(hG))

=21+ O(h?) as h — 0.
Consequently,

Ao~ g a5 B,

and the global error satisfies |[E"|| = O(h?) as h — 0. Since

4 mm 8
h h N
|44y = p(A") = D] = 25 [1_005 <m+1)] <5

the condition number of A" with respect to the 2-norm is:

. 8 1 4 1
) = LI e~ (1) (55) = = 0 () wsn—o.

This means that the matrix becomes very ill-conditioned as the mesh width h gets smaller.
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5.4.6 Variational Formulation

We end the section with some theoretical approach of solving elliptic PDEs. We will study the
variational approach which play a prominent role in elliptic PDEs over the last few decades.
It is based on the notion of weak solutions, which proved to be one of the most elegant yet
powerful concept in the field of PDEs.

Consider the one-dimensional Poisson equation with homogeneous Dirichlet boundary con-

ditions:
—u" = 0 1
W= fle), 0<e<l, (Dirichlet)
u(0) = u(1) = 0.

Consider the linear space:

V= {U € C[0,1]: v is bounded, piecewise continuous on [0, 1] and v(0) = v(1) = O}.

Consider the linear functional F': V' — R defined by

F(v) = 50 = (f.0),

where (-, -) is the standard L2-inner product on [0, 1]:

{f,9) = fo f(x)g(x)dx.

Define the following two problems:

Find u € V such that F(u) < F(v) for all ve V. (Min)
Find u € V such that {(u',v") = {f,v). (Var)

Theorem 5.4.6. If u is a solution to the (Dirichlet) problem, then w is also a solution to the
problem (Var).

Proof. Integrating the Poisson equation in (Dirichlet) against a test function v € V' over [0, 1]:

1 1
<f,v>=f fvdxz—f u"v dx
0 0
1 1
—i—f u'v' dx
0

= —[uo] 0

1
= f u'v' dr = (v’
0

where the boundary term vanishes due to v(0) = v(1) = 0.
|

Theorem 5.4.7. The wvariational problem (Var) is equivalent to the minimisation problem

(Min).
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Proof. Assume u is a solution to the variational problem (Var). We need to show that F(u) <
F(v) for all v e V. Decomposing v = u + w, where w € V', then

Fv) = F(u+w) = %<u'+w’,u’+w’>—<f,u+w>
- (5 =) + [y~ <]+ gt
= F(u) + %(w’, w'y
> F(u),

where the second term vanishes since u is a solution to the variational problem (Var) by as-
sumption. Hence, F(u) < F(v) for allve V.

Conversely, suppose u is a solution to the minimisation problem (Min). For any v € V' and
e >0, we have u+¢ev e V and so F(u) < F(u+ev). Treating g(¢) := F(u+¢€v) as a function of
e, we deduce that ¢g(¢) has a minimum at € = 0 for any v € V. We now compute the Gateaux
derivative of F'(-). Expanding g(c) gives:

1
g(e) = F(u + ev) = §<u/+ev’,u’ +ev'y — {f,u +ev)

= %@/, u'y 4+ elu’ vy + %@', vy = {(fuy —e(f,v)
Wy + e oy — (f )

= ¢'(¢)

The desired conclusion follows from ¢'(¢)| = 0.
e=0

Theorem 5.4.8. The solution to the variational problem (Var) is unique.

Proof. Suppose uy,us € V are any two solutions of the variational problem (Var). For allv € V|
uy, uy satisfy the following equation:

(uy, vy = (f,v)
(g, 'y = {f, )

Subtracting both equations then gives us:
{uy — uh,v"y = 0.
We choose the particular v' = u] — u), € V| then:

/ oo N / I . _
(uy —up,uy —ugy =0 = uj —uy =0 = u; —uy = 0.

Summarising everything, we have the following relation:

(Dirichlet) = (Var) <= (Min).
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Is it possible to show that (Var) == (Dirichlet)? Assume u € C?[0,1] and f € C[0,1],
integrating by parts gives

1 1
fu”vdx—i—f fvdr =0 forallveV,
0 0

where again the boundary term vanishes since v(0) = v(1) = 0. After some justification, we

arrive at
u"+ f=0 forall xze(0,1).
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